

Instant Oracle
Database and
PowerShell How-to

Utilize the power of Microsoft's powerful scripting engine
to automate database tasks with Oracle from PowerShell

Geoffrey Hudik

BIRMINGHAM - MUMBAI

Instant Oracle Database and PowerShell
How-to

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Production Reference: 1180113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-858-1

www.packtpub.com

Credits

Author
Geoffrey Hudik

Reviewer
Laurent Schneider

Acquisition Editor
Martin Bell

Commissioning Editor
Maria D'souza

Technical Editors
Priyanka Shah

Vrinda Amberkar

Project Coordinators
Priya Sharma

Esha Thakker

Proofreader
Aaron Nash

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

Cover Image
Conidon Miranda

About the Author

Geoffrey Hudik is a developer with 14 years of experience. He has worked with a variety
of companies including Alltel Information Services, JPMorgan Chase, TeamHealth, and
Eventbooking.com. These days, he mostly works with C#, ASP.NET MVC and web technologies,
Windows development, CTI, XAML, Oracle, SQL Server, PowerShell, Kinect, and mobile
technologies including Windows Phone and iOS. He records his thoughts on his blog at
http://geoffhudik.com/tech and on Twitter (@thnk2wn).

I would like to thank Jim Tilson for the expert Oracle help and general
support over the years, as well as for much of the script and techniques
in the recipe Automating SQL*Plus (Advanced), Additional thanks go out
to Eddie Frederick, Bryant Brabson, and Jim Christopher for PowerShell
assistance, general advice, and inspiration.

About the Reviewer

Laurent Schneider spends his time tuning Oracle databases and developing Oracle
applications. When not working on Unix systems, he enjoys using PowerShell to start
SQL*Plus scripts and to execute PL/SQL database procedures.

Laurent is working as a Senior Database Administrator for a leading wealth manager
in Switzerland.

Laurent is the author of the blog, http://laurentschneider.com, and the book,
Advanced Oracle SQL Programming.

When not at work, you will find Laurent playing chess tournaments or skiing in the Alps
with his kids Dora and Loïc.

I would like to thank Priya Sharma for her confidence and her patience.
Thanks to the entire Packt Publishing team for their dedication.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today
and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Instant Oracle Database and PowerShell How-to 7

Setting up your environment (Simple) 7
Accessing Oracle (Simple) 8
Connecting and disconnecting (Simple) 12
Retrieving data (Simple) 16
Filtering and exporting data (Simple) 20
Adding records (Simple) 24
Importing sets of records (Medium) 28
Updating and deleting records (Simple) 32
Executing database procedures (Medium) 35
Organizing and invoking scripts (Medium) 40
Script automation and error handling (Medium) 44
Creating reusable script modules (Advanced) 50
Automating SQL*Plus (Advanced) 55
Exploring ODT assemblies (Advanced) 60
Visualizing data (Advanced) 64

Preface
So why use Oracle and PowerShell together in the first place? Often there is a need to
automate some work with Oracle that would be tedious to do manually in a large, graphical
application such as Toad or SQL Developer. Command-line tools such as SQL*Plus exist,
but do not provide the richness that PowerShell offers with its object-oriented pipeline that
leverages the .NET framework and core Windows components.

PowerShell offers a lightweight yet very capable alternative to interacting with Oracle in
and with Windows. It can be faster than a bloated DMBS GUI application, less work than
programming an ad-hoc Oracle utility application, and more powerful than plain text
shell scripting environments. PowerShell can be beneficial both for simple, ad-hoc Oracle
operations and for complex scripts to automate large batch operations. You do not need
to be a programmer to use it; it can be well suited for application developers, DBAs, report
writers, data analysts, and other roles.

Oracle can feel more difficult on Windows in general in areas such as installation,
configuration, support, stability, and tooling and this can extend to PowerShell. Secondly,
unlike with SQL Server, there is no native set of PowerShell cmdlets to ease working with
Oracle. With the scripting shell and database coming from competing companies, this may
not change soon.

The good news is that through some elbow grease and leveraging various libraries and
PowerShell's flexibility, you can manage Oracle from script without too much trouble.

What this book covers
Setting up your environment (Simple), covers the prerequisites such as what you will
want to have installed and configured to get started.

Accessing Oracle (Simple), teaches you to access Oracle through loading ODP.NET
and other libraries.

Connecting and disconnecting (Simple), covers connecting with and without TNS names,
TNS discovery, config file connections, secure credentials, and more.

Preface

2

Retrieving data (Simple), introduces you to the basics of selecting and enumerating data
using DataTables, DataReaders, and related objects.

Filtering and exporting data (Simple), builds on the basics from retrieving data with filtering
and finding data from the retrieved results and outputting it to different formats.

Adding records (Simple), shows how to insert records and retrieve record IDs.

Importing sets of records (Medium), teaches how to batch import new records from other
data stores.

Updating and deleting records (Simple), covers the basics of modifying and removing records.

Executing database procedures (Medium), discusses invoking functions, procedures, and
package procedures.

Organizing and invoking scripts (Medium), demonstrates how to organize scripts into
functions and reusable script files and how to invoke and debug scripts.

Script automation and error handling (Medium), shows how to run scripts in an automated
fashion. It also covers scheduled tasks, transcription, logging, error handling, and notification
of results.

Creating reusable script modules (Advanced), takes script files to the next level with more
powerful and reusable PowerShell scripting.

Automating SQL*Plus (Advanced), covers executing more complex SQL such as large,
combined DDL scripts using SQL*Plus from PowerShell.

Exploring ODT assemblies (Advanced), shows how to use the Oracle Developer Tools for
Visual Studio library from PowerShell to take advantage of rich Oracle objects.

Visualizing data (Advanced), shows how to use libraries to visualize data from Oracle
with graphs, charts, and so on.

What you need for this book
You should have a solid understanding of Oracle, SQL, and relational database concepts
before getting started. You should also have at least a basic familiarity with PowerShell; while
you can learn PowerShell from this book, the focus is on using Oracle from PowerShell and
not on introducing PowerShell basics. It will also be helpful if you have any experience with
Microsoft's .NET framework but this is not required. The focus of this book will be interacting
with Oracle libraries from PowerShell, and not Oracle concepts or PL/SQL development.

The first recipe, Setting up your environment, will address software and setup requirements
for getting started. Some later chapters will have additional requirements when applicable.

Preface

3

Who this book is for
The primary target audiences for this book are application developers who work with Oracle
databases and Oracle DBA type roles. Other applicable audiences might include report
developers, data analysts, data architects, or QA personnel.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Invoke Select-TNS to list all entries or pipe it to
Where-Object to filter it down."

A block of code is set as follows:

function Select-TNS
{
 $enu = New-Object Oracle.DataAccess.Client.
OracleDataSourceEnumerator
 Write-Output $enu.GetDataSources()
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

$dt = New-Object System.Data.DataTable
[void]$da.Fill($dt)
return ,$dt

Any command-line input or output is written as follows:

PS > Set-ExecutionPolicy RemoteSigned

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

4

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Preface

5

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Instant Oracle
Database and

PowerShell How-to

Welcome to Instant Oracle Database and PowerShell How-to. In this book you will learn how to
interact with Oracle databases from PowerShell, including connection and discovery, querying,
and modifying data and objects, and executing database logic. With the help of this book
you can avoid manual labor and painful applications, and start leveraging the strengths of
PowerShell scripting and .NET to automate Oracle database tasks.

Setting up your environment (Simple)
Before jumping into PowerShell, make sure your system is ready to begin.

Getting ready
At a minimum, you will want the following to get started with Oracle and PowerShell:

 f Accessible Oracle database: The examples in this book are tested primarily against
the sample HR schema provided with Oracle 11g Express edition, a free download
from www.oracle.com.

 f PowerShell 2.0 (or later): This is included with Windows 7 and Windows Server 2008
R2, and also available as a free download for older Windows OS versions.

 f Oracle Data Access Components (ODAC): This is a free download from www.
oracle.com. Preferably use Oracle Developer Tools for Visual Studio (for later use in
this book). Examples are tested primarily against using the 32 bit ODAC distribution.
The 64 bit version is not required for use on a 64 bit OS.

Instant Oracle Database and PowerShell How-to

8

 f DBMS Application: A DBMS tool is technically optional but will help in browsing and
verifying results. Toad for Oracle is a popular choice; another one is SQL Developer,
a free download from www.oracle.com.

How to do it...
Follow these steps to run PowerShell scripts:

1. Ensure you start an x86 PowerShell host session on a 64 bit OS if the 32 bit version
of ODAC is installed; otherwise use an x64 session.

2. In PowerShell, ensure output of Get-ExecutionPolicy is not Restricted. If it is,
run the following command:
PS > Set-ExecutionPolicy RemoteSigned

How it works...
With these tools, you will have what you need for most of the examples in this book.

By configuring PowerShell's execution policy in this manner you will have necessary
permission to run scripts and load configuration files.

There's more...
Some later examples will specify additional setup as required.

For more on execution policy, run the following help command in PowerShell:

PS > get-help set-executionpolicy -detailed

Accessing Oracle (Simple)
In this recipe we will look at loading libraries to create objects to interact with Oracle.

Getting ready
Open a PowerShell session for the appropriate processor architecture, x86 or x64 according
to your ODAC installation. See the preceding recipe, Setting up your environment (Simple) for
more information. Often it is easiest to start with the PowerShell ISE (Integrated Scripting
Environment) for a better editing and debugging experience.

Instant Oracle Database and PowerShell How-to

9

How to do it...
1. The Oracle Data Provider for .NET (ODP.NET) is included with ODAC in Oracle.

DataAccess.dll and is generally the best choice for accessing Oracle. The first
step is loading this library into memory:
$odpAssemblyName = "Oracle.DataAccess, Version=2.112.3.0,
Culture=neutral, PublicKeyToken=89b483f429c47342"
[System.Reflection.Assembly]::Load($odpAssemblyName)

GAC Version Location

--- ------- --------

True v2.0.50727 C:\Windows\assembly\GAC_32\Oracle.DataAccess
\2.112.3.0__89b483f429c47342\Oracle.DataAccess.dll

2. Once the assembly is loaded you can start creating types. If you are not sure what
object types are available, use the following code to enumerate public types in the
Oracle.DataAccess assembly.
$asm = [appdomain]::currentdomain.getassemblies() | where-object
{$_.FullName -eq $odpAssemblyName}
$asm.GetTypes() | Where-Object {$_.IsPublic} | Sort-Object {$_.
FullName } | ft FullName, BaseType | Out-String

3. With the assembly loaded, and the types to create known, you can now start creating
objects. A logical place to start is with a connection object:
$conn = New-Object Oracle.DataAccess.Client.OracleConnection

How it works...
First the .NET Framework's Assembly.Load method is called and a fully qualified assembly
name is specified. By default PowerShell 2.0 runs against the .NET Framework 2.0 so the 2.x
version of Oracle.DataAccess is specified in $odpAssemblyName. The parts of the assembly
name can be found by inspecting %WINDIR%\assembly\ in Windows Explorer. Because the
output was not explicitly captured or discarded, details of the loaded assembly are shown.

Next, the AppDomain.CurrentDomain.GetAssemblies method is invoked and the list is
filtered down to the Oracle.DataAccess assembly. This verifies that the assembly loaded and
provides a reference to it. Finally it gets the types in that assembly, narrows them down by
public types, sorts the data by full name, and formats the resulting table with the full name
and base type properties of each Oracle type that is available.

Instant Oracle Database and PowerShell How-to

10

There's more...
To discard the output of the assembly load, use either [void] or a pipe to Out-Null.

[System.Reflection.Assembly]::Load($odpAssemblyName) | Out-Null
[void][System.Reflection.Assembly]::Load($odpAssemblyName)

Alternatively, capture the output to a variable and format another way:

$odpAsm = [System.Reflection.Assembly]::Load($odpAssemblyName)
"Loaded Oracle.DataAccess from {0}" -f $odpAsm.Location

Here are three other ways of loading ODP.NET:

 f [Reflection.Assembly]::LoadWithPartialName("Oracle.DataAccess")

$filename = "C:\Oracle\product\11.2.0\client_1\odp.net\bin\2.x\
Oracle.DataAccess.dll"

 f [void][Reflection.Assembly]::LoadFile($filename)

 f [void][Reflection.Assembly]::LoadFrom($filename)

LoadWithPartialName is convenient but blindly loads an unknown version of ODP.NET.
Both LoadFile and LoadFrom can also lead to issues. See http://msdn.microsoft.
com/en-us/library/dd153782.aspx for assembly loading best practices. Using Load
with an explicit, full assembly identity is safest, despite more typing.

Now, let's find out how to get help with ODP.NET, and some other ways of accessing Oracle.

Getting help with ODP.NET
Oracle's ODP documentation can be accessed via the Start Menu, with Windows Explorer
under ORACLE_BASE\ORACLE_HOME\ODACDoc\DocumentationLibrary, or online at
http://docs.oracle.com.

Also, PowerShell's Get-Member (alias gm) is useful for inspecting available members of
objects; for example, use $conn | gm to list all the properties and methods available
on the OracleConnection that was created.

Loading ODP.NET 4.0
The ODAC installation installs two versions of Oracle.DataAccess, one for .NET Framework
2 and another for PowerShell 2.0, which was built before .NET Framework 4.0. As such, you
cannot directly load Version 4.0 assemblies by default. Generally the Version 2.0 will suffice.
If there are specific 4.0 features you want, you have a few options:

 f Change a global registry setting that forces all .NET 2.0 assemblies to run under .NET
4 (from PowerShell or otherwise); this has a number of serious consequences and
should almost always be avoided.

Instant Oracle Database and PowerShell How-to

11

 f Create or update powershell.exe.config and powershell_ise.config in
$pshome (that is %WINDIR%\SysWOW64\WindowsPowerShell\v1.0) for x86
and/or x64 to run PowerShell sessions under .NET 4.0; this is better than the first
option, but still applies globally. See http://poshcode.org/2045 for details.

 f Use custom script code to selectively run a given script block or file as a .NET 4.0
child process from within PowerShell's .NET 2.0 context. This has the least potential
impact but can make running and debugging more difficult. For example:
https://gist.github.com/882528.

 f Use PowerShell 3.0, which uses .NET 4.0 by default. This is the best option.

If PowerShell 3.0 is available that is the path of least resistance. Otherwise the PowerShell
configuration modifications are most likely the next best route, unless you have various other
PowerShell scripts or cmdlets (built-in or custom) that may not execute correctly when run
under the .NET Framework 4.0 runtime.

Once configured, load the assembly as before but specify the 4.X version number.

$odpAssemblyName = "Oracle.DataAccess, Version=4.112.3.0,
Culture=neutral, PublicKeyToken=89b483f429c47342"
[System.Reflection.Assembly]::Load($odpAssemblyName)

To get the assembly name and other details here, you can open %WINDIR%\Microsoft.
NET\assembly in Windows Explorer, navigate to Oracle.DataAccess.dll, and open the
DLL in a dissembler such as dotPeek by JetBrains.

Using OLE DB
One alternative to ODP.NET is using OLE DB (included with ODAC). In this case the assembly
is already loaded; just start creating the types.

$conn = New-Object System.Data.OleDb.OleDbConnection

The only real advantage of OLE DB is your scripts are more portable in that your data access
script logic can be reused for databases other than Oracle. This comes at the cost of slow
performance with COM interop, the loss of some Oracle optimizations, and less functionality
than ODP.NET.

Using Microsoft's Data Provider for Oracle
Microsoft's .NET Framework Data Provider for Oracle (System.Data.OracleClient) is
deprecated and generally should not be used. It does provide a more lightweight footprint
than a full ODAC install but has a number of performance and functionality limitations and
is not being maintained.

[System.Reflection.Assembly]::Load("System.Data.OracleClient,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089")
$conn = New-Object System.Data.OracleClient.OracleConnection

Instant Oracle Database and PowerShell How-to

12

Other ways to access Oracle
Using an ODBC driver (included with ODAC) is an older technique but could be useful in
conjunction with systems that do not support newer drivers. Another option is loading a .NET
data access DLL from PowerShell. This could be either a standard .NET class library or one
that references System.Management.Automation.dll and exposes cmdlets for friendly
PowerShell usage.

You can also use Oracle's SQL*Plus client from PowerShell to send commands and receive
outputs via pipes. This book will focus primarily on using ODP.NET directly from PowerShell.
Despite some heft, ODP.NET provides the best performance and functionality and staying
in a PowerShell script context prevents more involved work of developing compiled DLLs.

Connecting and disconnecting (Simple)
In this recipe we will explore making connections to Oracle.

Getting ready
Start by gathering any database connection details such as server and user information.
The example connection string is against the HR sample database included with Oracle
Express. To connect to this database you may need to adjust the user ID and/or password in
the connection string according to how you set it up. Refer to the Oracle Database Express
Edition Getting Started Guide for more information.

How to do it...
The code in this section assumes that ODP.NET has already been loaded as described in the
preceding recipe. Let's look at connecting without using TNS names:

function Connect-Oracle([string] $connectionString = $(throw
"connectionString is required"))
{
 $conn= New-Object Oracle.DataAccess.Client.OracleConnection($conn
ectionString)
 $conn.Open()
 Write-Output $conn
}

function Get-ConnectionString($user, $pass, $hostName, $port, $sid)
{
 $dataSource = ("(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST={0})
(PORT={1}))(CONNECT_DATA=(SERVICE_NAME={2})))" -f $hostName, $port,
$sid)
 Write-Output ("Data Source={0};User Id={1};Password={2};Connection

Instant Oracle Database and PowerShell How-to

13

Timeout=10" -f $dataSource, $user, $pass)
}

$conn = Connect-Oracle (Get-ConnectionString HR pass localhost 1521
XE)
"Connection state is {0}, Server Version is {1}" -f $conn.State,
$conn.ServerVersion
$conn.Close()
"Connection state is {0}" -f $conn.State

How it works...
First a Connect-Oracle function is defined to create and open a connection. It requires
a connection string by throwing an error if it is not set. An OracleConnection objection
is then created using that connection string and the connection is opened. Finally, the
connection object is written to output with Write-Output $conn; this could have also been
done with return $conn or just $conn. Using return can be deceiving because any output
of the function that is not captured will become part of the function return value and not just
what follows the return statement.

Get-ConnectionString takes in the key server and user data as arguments and uses the
-f format operator to concatenate a connection string for ODP.NET.

Next these functions are invoked with $conn = Connect-Oracle (Get-
ConnectionString HR pass localhost 1521 XE); note the parentheses to ensure
the appropriate order of operations and output. Also note that you may need quotes for some
argument values in certain cases (that is, $pass). Finally the connection will be closed, with
some connection properties being output both before and after. The connection code could be
reduced but breaking the steps into functions makes the script more maintainable and reusable.

There's more...
For connection string help, try http://connectionstrings.com/oracle.

Let's explore some additional connection techniques to use.

Connecting with TNS Names
To connect via TNS you can change the $dataSource variable in Get-ConnectionString
to point to a valid TNS Names alias.

1. For example, $dataSource = "LOCALDEV" with LOCALDEV defined in ORACLE_
BASE\ORACLE_HOME\Network\Admin\tnsnames.ora can be defined as follows:
LOCALDEV =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))

Instant Oracle Database and PowerShell How-to

14

 (CONNECT_DATA =
 (SERVICE_NAME = xe)
)
)

2. TNS entries can be browsed using a function as follows:
function Select-TNS
{
 $enu = New-Object Oracle.DataAccess.Client.
OracleDataSourceEnumerator
 Write-Output $enu.GetDataSources()
}

3. Invoke Select-TNS to list all entries or pipe it to Where-Object to filter it down:
Select-TNS | where-object {$_.InstanceName -like '*DEV*'} | ft

Reading connection strings from config files
1. Often connection strings are stored in app config files, such as the following:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <connectionStrings>
 <add name="AppConnect"
 connectionString="Data Source=LOCALDEV;User
Id=HR;Password=pass;Connection Timeout=10"/>
 </connectionStrings>
</configuration>

You can easily read the connection string from such a file as follows:
function Get-ConfigConnectionString(
 [string] $filename = $(throw "filename is required"),
 [string] $name = $(throw "connection string name is
required"))
{
 $config = [xml](gc $filename)
 $item = $config.configuration.connectionStrings.add | where
{$_.name -eq $name}
 if (!$item) { throw "Failed to find a connection string with
name '{0}'" -f $name}
 return $item.connectionString
}

$connectString = Get-ConfigConnectionString .\App.config
AppConnect

Instant Oracle Database and PowerShell How-to

15

The Get-ConfigConnectionString function uses gc (an alias for Get-Content)
to read the file's XML text and then creates an XmlDocument from the result with
[xml]. It then looks for and returns the specified connection string, or throws an
exception if the specified connection was not found.

2. Some connection strings may be stored in machine.config under %WINDIR%\
Microsoft.NET\Framework\[Version]\Config\ where [Version] is the .NET
Framework version (i.e. v2.0.50727 or v4.0.30319). These can be accessed with Get-
ConfigConnectionString or via using the ConfigurationManager class:
$config = [System.Configuration.ConfigurationManager]::OpenMachine
Configuration()
$connectString = $config.ConnectionStrings.
ConnectionStrings["AppConnect"]

If securing connection strings is a concern, you might use
Secure-String if the account encrypting and decrypting is the
same, or use Library-StringCrypto.ps1 by Steven Hystad.

Prompting for connection credentials
If a user-interactive script is acceptable there may be times where you want to prompt for
credentials to use in building a connection string:

function Get-Password
{
 $securePass = Read-Host "Enter Password" -AsSecureString
 $bstr = [System.Runtime.InteropServices.Marshal]::SecureString
ToBSTR($securePass)
 $pass = [System.Runtime.InteropServices.Marshal]::PtrToStringA
uto($bstr)
 [System.Runtime.InteropServices.Marshal]::ZeroFreeBSTR($bstr)
 return $pass
}

$user = read-host "Enter username"
$pass = Get-Password
$connectString = "Data Source=LOCALDEV;User
Id={0};Password={1};Connection Timeout=10" -f $user, $pass

This script defines a Get-Password function that uses the –AsSecureString switch
of Read-Host to get a secure password string. It then does a couple of conversions and
cleanup using methods in System.Runtime.InteropServices.Marshal class to return
a plain text version of the secure password.

Instant Oracle Database and PowerShell How-to

16

It then prompts for a username using Read-Host, invokes the function to get the password,
and injects those values into the connection string.

Retrieving data (Simple)
In this recipe we will look at the basics of retrieving data from Oracle in PowerShell.

Getting ready
Use code from the preceding recipes to load ODP.NET and establish a connection.

How to do it...
1. First create a function to return a .NET DataTable instance with a connection

and a SQL SELECT statement:
function Get-DataTable
{
Param(
 [Parameter(Mandatory=$true)]
 [Oracle.DataAccess.Client.OracleConnection]$conn,
 [Parameter(Mandatory=$true)]
 [string]$sql
)
 $cmd = New-Object Oracle.DataAccess.Client.
OracleCommand($sql,$conn)
 $da = New-Object Oracle.DataAccess.Client.
OracleDataAdapter($cmd)
 $dt = New-Object System.Data.DataTable
 [void]$da.Fill($dt)
 return ,$dt
}

2. Connect as in the preceding recipe and call the function passing the connection
and SQL:
$conn = Connect-Oracle (Get-ConnectionString)
$dt = Get-DataTable $conn "select employee_id, first_name, last_
name, hire_date from employees where job_id = 'SA_MAN'"

3. Output a heading showing how many records were returned and then the raw data:
"Retrieved {0} records:" -f $dt.Rows.Count
$dt | ft -auto

Instant Oracle Database and PowerShell How-to

17

4. Iterate through the data and perform some processing:
foreach ($dr in $dt.Rows)
{
 $eligible = [DateTime]::Now.AddYears(-5) -ge $dr.hire_date

 if ($eligible)
 {
 Write-Output ("{0} {1} is eligible" -f $dr.first_name,
$dr.last_name)
 }
}

5. When finished, close the connection:
$conn.Close()

6. Run the script. The output will vary by date but should be similar to the following:
Retrieved 5 records:

EMPLOYEE_ID FIRST_NAME LAST_NAME HIRE_DATE
----------- ---------- --------- ---------
 145 John Russell 10/1/2004 12:00:00 AM
 146 Karen Partners 1/5/2005 12:00:00 AM
 147 Alberto Errazuriz 3/10/2005 12:00:00 AM
 148 Gerald Cambrault 10/15/2007 12:00:00 AM
 149 Eleni Zlotkey 1/29/2008 12:00:00 AM

John Russell is eligible
Karen Partners is eligible
Alberto Errazuriz is eligible

How it works...
Get-DataTable first defines the connection and SQL parameters more formally within a
Param block and uses a Parameter attribute before each to specify additional metadata
indicating that the parameters are required (preferred over using throw).

Next, an OracleCommand object is created using the connection and SQL string parameters
passed in. That command is passed in as the selectCommand argument when constructing
the OracleDataAdapter on the next line. A new DataTable object is then created and it
is populated using the data adapter with [void]$da.Fill($dt); void prevents the Fill
output so the function only has a single value being returned. The adapter can also fill a
DataSet when multiple tables are involved.

Instant Oracle Database and PowerShell How-to

18

The last line of the function returns the DataTable using return ,$dt; the comma
("unary comma") is important as it prevents PowerShell from unrolling the collection of rows
of DataTable. By default PowerShell unrolls enumerable types, meaning that without the
comma the return type of this method would actually be Object[] (the Object array of
DataRow) or a DataRow if only one record.

Generally this unrolling is desirable, as it is useful with piping so script blocks downstream
in the pipeline can start operating on items one at a time for faster output and perceived
performance. In the case of this script this is avoided since a small amount of data is
completely loaded in memory, there is no heavy processing, and the function implies
returning a consistent type of DataTable (with all of its functionality available).

Get-DataTable is passed the open connection object and an inline SQL string; for more
complex SQL you might want to use a multiline string or read the SQL from a file. The output
from the function is captured in the $dt variable and the script outputs the count of rows and
then uses $dt | ft -auto to format the DataTable output as a table with the columns
auto-sized to the data.

Finally the script uses a foreach loop to iterate through each DataRow and perform
processing and close the connection when finished. The processing here is an arbitrary
calculation of eligibility based on being hired for 5 years or longer, with output based on
being eligible. Note that with PowerShell we were able to use $dr.hire_date to refer
to the hire_date field without having to use $dr["hire_date"].

There's more...
There are a few more basics to look at including other ways to iterate the data and handling
null checking.

Unrolling and null checking
Let's look at an example where we are not preventing the unrolling of the collection:

1. First we replace return ,$dt in Get-DataTable with return $dt
(removing the comma).

2. Next we change the code between the Connect-Oracle
(Get-ConnectionString) and $conn.Close() lines to the following:
$sql = "select city, state_province from locations order by city,
state_province"

Get-DataTable $conn $sql | foreach {
 $cityState = $_.city
 if ($_.state_province -ne [DBNull]::Value)
 {
 $cityState += ", " + $_.state_province

Instant Oracle Database and PowerShell How-to

19

 }
 Write-Output $cityState
}

In this example each DataRow that was unrolled from the DataTable is piped to the
ForEach-Object cmdlet (foreach alias) one at a time. Note that all the data is
still loaded into memory inside the DataTable in one database call; this just iterates
over them in a "lazy fashion".

For more information on the differences between the foreach statement
used in the first example with the ForEach-Object cmdlet used
here, see: http://poshoholic.com/2007/08/21/essential-
powershell-understanding-foreach/.

The other item of note in this script is the State/Province field is checked to ensure it
is not equal to null, using [DBNull]::Value and not $null.

Using a DataReader
At times it may be beneficial to read one record at a time from Oracle, usually when iterating
through a large number of records.

1. We can do this using a function similar to Get-DataTable but returning a
DataReader instead:
function Get-DataReader
{
Param(
 [Parameter(Mandatory=$true)]
 [Oracle.DataAccess.Client.OracleConnection]$conn,
 [Parameter(Mandatory=$true)]
 [string]$sql
)
 $cmd = New-Object Oracle.DataAccess.Client.
OracleCommand($sql,$conn)
 $reader = $cmd.ExecuteReader()
 return ,$reader
}

2. We invoke the function in a similar fashion:
$sql = "select city, state_province from locations order by city,
state_province"
$reader = Get-DataReader $conn $sql

The iteration changes to use $reader.Read() and string fields are read using the
DataReader's GetString method, combined with GetOrdinal to get the position

Instant Oracle Database and PowerShell How-to

20

of the field, and IsDBNull to check for null values:

while ($reader.Read())
{
 $city = $reader.GetString($reader.GetOrdinal("city"))
 $stateProvince = $null

 if (!$reader.IsDBNull($reader.GetOrdinal("state_province")))
 {
 $stateProvince = $reader.GetString($reader.
GetOrdinal("state_province"))
 }

 "City is '{0}', State/Province is '{1}'" -f $city,
$stateProvince
}

3. After iterating over the data, we close the DataReader before closing the connection:
$reader.Close()

Reading in this manner is more tedious than filling a DataTable but the memory
savings may be worth it in cases where you are working with large amounts of data.

Filtering and exporting data (Simple)
In this recipe we will look at filtering and sorting data and outputting data to different
file formats.

Getting ready
Complete all previous recipes including Retrieving data (Simple).

How to do it...
1. Since we want to output files to the script's directory, define this function:

function Get-ScriptDirectory
{
 if (Test-Path variable:\hostinvocation)
 {
 $FullPath=$hostinvocation.MyCommand.Path
 }
 else
 {

Instant Oracle Database and PowerShell How-to

21

 $FullPath=(get-variable myinvocation -scope script).value.
Mycommand.Definition
 }
 if (Test-Path $FullPath)
 {
 return (Split-Path $FullPath)
 }
 else
 {
 $FullPath=(Get-Location).path
 Write-Warning ("Get-ScriptDirectory: Powershell Host <" +
$Host.name `
 + "> may not be compatible with this function, the
current directory <" `
 + $FullPath + "> will be used.")
 return $FullPath
 }
}

2. Establish a connection as in past recipes:
$conn = Connect-Oracle (Get-ConnectionString)
Define a SQL select statement. Here we get employee with manager
data:
$sql = @"
SELECT e.employee_id,
 e.first_name || ' ' || e.last_name employee,
 j.job_title, e.hire_date,
 m.first_name || ' ' || m.last_name manager
FROM employees e
 JOIN jobs j
 ON e.job_id = j.job_id
 JOIN employees m
 ON e.manager_id = m.employee_id
"@

3. Populate a DataTable, set its table name, and close the connection:
$dt = Get-DataTable $conn $sql
$dt.TableName = "Employee"
$conn.Close()

4. Add the script's directory to the location stack and remove any *.HR.* output files
there. This is a clean-up step for files we will create shortly.
Push-Location (Get-ScriptDirectory)
Remove-Item *.HR.* -force

Instant Oracle Database and PowerShell How-to

22

5. Output the raw data from the DataTable to text files formatted as a list and a table,
and to XML and CSV formats:
$dt | Format-List | Out-File .\EmployeesList.HR.txt
$dt | Format-Table -auto | Out-File .\EmployeesTable.HR.txt
$dt.WriteXml(".\Employees.xml")
$dt | Export-CSV .\Employees.csv

6. Create custom output files by piping the DataTable to Where-Object to filter it
down, Sort-Object to order it, and ForEach-Object to iterate and process it,
appending employee data to text files:
$dt | Where-Object {$_.job_title -like '*Sales*' -and $_.hire_date
-ge [datetime]"02/01/2004"} `
 | Sort-Object {$_.manager, $_.employee} `
 | ForEach-Object { `
 Add-Content (".\Manager-{0}.HR.txt" -f $_.manager) ("{0},
{1}" -f $_.employee, $_.job_title)
 }

7. Invoke the current directory to launch Windows Explorer to see the output files
created and remove the script's directory from the location stack:
Invoke-Item .
Pop-Location

8. Run the script and inspect the files that were created:

How it works...
The Get-ScriptDirectory function handles some subtle differences between PowerShell
hosts to return the directory where the script is running. This will be used later on to create
output files. Alternatively we could hardcode the path directly or change the directory to the
desired location with Set-Location.

Instant Oracle Database and PowerShell How-to

23

The SQL string is defined using PowerShell's here-string construct with the @ symbol before
and after the string. This makes it easy to define a formatted, multiline string.

After loading the DataTable, it is given a name with $dt.TableName = "Employee"; this
is required later to create the XML file with $dt.WriteXml as it needs a table name to know
what tag name to use for each XML record.

Push-Location (or pushd for short) is then used to add the script's directory to the location
stack and change the current directory location to that path. This makes it easier for file I/O to
come, as full filenames will not have to be specified. Next any files in this directory matching a
.HR. pattern are removed with Remove-Item; this ensures that on any subsequent script
runs we start with a clean slate and does not append duplicate data to existing files.

Next, the raw data from the DataTable is output using different formats. First the data is
formatted as a list with Format-List and piped to Out-File to create a list-formatted text
file. In a similar fashion, a table-formatted text file is produced using Format-Table. An XML
file is written using $dt.WriteXml(".\Employees.xml").This could also be done with
($dt | ConvertTo-Xml -NoTypeInformation).Save(".\Employees.xml"), but
that's more verbose and produces much larger output that isn't formatted as well. Lastly an
Excel-readable CSV file is produced via a pipe to Export-CSV.

Finally the data in the DataTable is filtered down with Where-Object to those records that
have a job title like *Sales* and a hire date greater than or equal to 02/01/2004. These
matches are then sorted with Sort-Object by the manager's name and then the employee's
name. Next ForEach-Object is used to iterate over these results and perform processing.
In this example the processing simply consisits of every manager building text files for his/her
employees by appending the employee name and job title with Add-Content.

Finally the script uses Invoke-Item . to launch the current directory in Windows
Explorer and Pop-Location (or popd for short), to remove the script's directory from
the location stack, and change back to the original directory before Push-Location
(Get-ScriptDirectory) was invoked.

There's more...
Another popular export option is HTML; let's take a look at that.

Exporting to HTML
One common HTML formatting option is using ConvertTo-HTML as follows:

$filename = join-path (Get-ScriptDirectory) Employees.html
if (Test-Path($filename)) {Remove-Item $filename -force}

$head = @"
<style>
table { font-family: "Lucida Sans Unicode", "Lucida Grande", Sans-

Instant Oracle Database and PowerShell How-to

24

Serif;
 font-size: 12px; background: #fff; margin: 45px; border-collapse:
collapse;
 text-align: left; }
th { font-size: 14px; font-weight: normal; color: #039; padding: 10px
8px;
 border-bottom: 2px solid #6678b1; }
td { border-bottom: 1px solid #ccc; color: #669; padding: 6px 8px; }
tbody tr:hover td { color: #009; }
</style>
"@

$dt | ConvertTo-HTML -head $head `
 -Property employee_id, employee, job_title, hire_date, manager `
 | Out-File $filename
Invoke-Item $filename

This code builds an HTML head section into $head to provide some nice styling of the table
and specifies that with the -head parameter of ConvertTo-HTML. It also specifies what
property names to include with -Property to prevent other properties of the DataTable
from being included (such as RowState, ItemArray, and so on).

Adding records (Simple)
In this recipe we will look at adding new records to Oracle tables with PowerShell.

Getting ready
To run the sample against Oracle's sample HR schema, you may need to first disable the
SECURE_EMPLOYEES trigger. See README.txt in this recipe's sample code for more details.

How to do it...
1. Create the following Add-Oracle function:

function Add-Oracle
{
Param(
 [Parameter(Mandatory=$true)][Oracle.DataAccess.Client.
OracleConnection]$conn,
 [Parameter(Mandatory=$true)][string]$sql,
 [Parameter(Mandatory=$false)][System.Collections.Hashtable]
$paramValues,
 [Parameter(Mandatory=$false)][string]$idColumn

Instant Oracle Database and PowerShell How-to

25

)
 $cmd = New-Object Oracle.DataAccess.Client.
OracleCommand($sql,$conn)
 $cmd.BindByName = $true
 $idParam = $null

 if ($idColumn)
 {
 $cmd.CommandText = "{0} RETURNING {1} INTO :{2} " -f $cmd.
CommandText, $idColumn, $idColumn
 $idParam = New-Object Oracle.DataAccess.Client.
OracleParameter
 $idParam.Direction = [System.Data.
ParameterDirection]::Output
 $idParam.DbType = [System.Data.DbType]::Int32
 $idParam.Value = [DBNull]::Value
 $idParam.SourceColumn = $idColumn
 $idParam.ParameterName = $idColumn
 $cmd.Parameters.Add($idParam) | Out-Null
 }

 if ($paramValues)
 {
 foreach ($p in $paramValues.GetEnumerator())
 {
 $oraParam = New-Object Oracle.DataAccess.Client.
OracleParameter
 $oraParam.ParameterName = $p.Key
 $oraParam.Value = $p.Value
 $cmd.Parameters.Add($oraParam) | Out-Null
 }
 }

 $result = $cmd.ExecuteNonQuery()

 if ($idParam)
 {
 if ($idParam.Value -ne [DBNull]::Value) { $idParam.Value }
else { $null }
 $idParam.Dispose()
 }

 $cmd.Dispose()
}

Instant Oracle Database and PowerShell How-to

26

2. Create an Add-Employee function to set up the Add-Oracle call:
function Add-Employee(
 [Parameter(Mandatory=$true)][string]$firstName,
 [Parameter(Mandatory=$true)][string]$lastName,
 [Parameter(Mandatory=$true)][string]$email,
 [Parameter(Mandatory=$true)][DateTime]$hireDate,
 [Parameter(Mandatory=$true)][string]$jobId,
 [Parameter(Mandatory=$false)][string]$phoneNumber
)
{
 $params = @{ 'FIRST_NAME'=$firstName; 'LAST_NAME'=$lastName;
'EMAIL'=$email; `
 'HIRE_DATE'=$hireDate; 'JOB_ID'=$jobId; 'PHONE_
NUMBER'=$phoneNumber }

 $sql = @"
INSERT INTO EMPLOYEES (
 EMPLOYEE_ID,
 FIRST_NAME,
 LAST_NAME,
 EMAIL,
 HIRE_DATE,
 JOB_ID,
 PHONE_NUMBER)
VALUES (
 EMPLOYEES_SEQ.NEXTVAL,
 :FIRST_NAME,
 :LAST_NAME,
 :EMAIL,
 :HIRE_DATE,
 :JOB_ID,
 :PHONE_NUMBER
)
"@
 $employeeId = Add-Oracle $script:conn $sql $params EMPLOYEE_ID
 $employeeId
}

3. Call the Add* functions to insert some records:
$conn = Connect-Oracle (Get-ConnectionString)

Add-Oracle $conn "INSERT INTO JOBS (JOB_ID,JOB_TITLE) VALUES
('CFO', 'Chief Financial Officer')"

Instant Oracle Database and PowerShell How-to

27

$employeeId = Add-Employee -firstName "Joe" -lastName "De Mase"
-email "joe@company.com" `
 -hireDate ([DateTime]::Now.Date) -jobId "CFO"
if ($employeeId) { "Added employee; new id is $employeeId" }

Add-Oracle $conn `
 "INSERT INTO COUNTRIES (COUNTRY_ID,COUNTRY_NAME,REGION_ID)
VALUES (:COUNTRY_ID, :COUNTRY_NAME, :REGION_ID)" `
 @{ 'COUNTRY_ID'='BG'; 'COUNTRY_NAME'='Bulgaria'; 'REGION_
ID'=1; }

$conn.Close()
$conn.Dispose()

How it works...
The Add-Oracle function expects a connection and a SQL INSERT statement at a minimum.
Optionally an associative array of name/value pairs (a dictionary that's a Hashtable) can be
specified in $paramValues to set any bind variables that may be in the SQL for the values
to be inserted. Bind variables help in preventing SQL injection attacks and avoid parsing. If
$paramValues is specified, it is enumerated to set up the Parameters collection of the
OracleCommand used for the insert.

Note that only the parameter names and values are set and other properties
such as DbType will be automatically resolved.

For situations where you are inserting into a table that has a numeric primary key column
and you want the record id back after the insert, specify the name of the primary key column
with the $idColumn parameter. If set, the function will create an output parameter and
modify the command text to return the id column value into that parameter. After the SQL is
executed with $cmd.ExecuteNonQuery(), the parameter value is output for the function
return value; any DBNull.Value (that is, error situation) is converted to $null to ease any
conditional checking of the value.

Add-Oracle function is more generic in nature to handle the common
insert cases; in some scenarios you may need more fine-grained control
over the Oracle parameter collection than this function provides.

The Add-Employee function simply makes inserting an employee record easier and reusable
via creating the $params dictionary and SQL with matching bind variables, passing that along
to Add-Oracle, and returning the employee id of the new record.

Instant Oracle Database and PowerShell How-to

28

Add-Employee uses the OracleConnection object in the script level
variable $conn as opposed to passing in the connection as a parameter as is
done in Add-Oracle. Here the idea is that more generic functions rely just
on parameters and the more specific ones may use script level variables. The
$script:conn syntax is used to clarify that this variable is in script scope.

The calls to the Add functions exercise different scenarios of inserting records, with and
without bind variables and record ID retrieval. The insert into the COUNTRIES table isn't
related to adding an EMPLOYEES record in this example but simply provides another example
and test case.

There's more...
One thing this script adds over scripts in previous recipes is disposal of the different ODP.NET
objects such as OracleParameter, OracleCommand, and OracleConnection. While the
Dispose calls are not technically needed, it is best practice for responsible use of resources.

While calling Dispose() on the OracleConnection object calls
Close(), it is often best to include both calls just to be explicit. Also note
that with PowerShell there is no native using statement block as there is
in C# or VB.NET to automatically call Dispose(), regardless of error or
success. A Try/Catch/Finally block could be used to achieve the same result.

In the following recipe we will look at inserting records in more of a bulk fashion.

Importing sets of records (Medium)
In this recipe we will look at adding records in batches from external sources. First we will
look at importing country data using OracleBulkCopy, from an XML file shown in the
following figure:

Instant Oracle Database and PowerShell How-to

29

to the following COUNTRIES table:

Getting ready
See previous recipes for the Add-Oracle, Get-ScriptDirectory, and connection
functions used in this recipe.

How to do it...
1. Load the countries XML file into a DataTable and add a REGION_ID column:

$regionId = 5
$ds = New-Object System.Data.DataSet
$srcFilename = (join-path (Get-ScriptDirectory) countries.xml)
[void]$ds.ReadXml($srcFilename)
$regionCol = New-Object System.Data.DataColumn("REGION_ID", [int])
$regionCol.DefaultValue = $regionId
$regionCol.ColumnMapping = [System.Data.MappingType]::Attribute
$countryDT = $ds.Tables["country"]
$countryDT.Columns.Add($regionCol)

2. Connect and insert a region record for the countries to be imported:
$conn = Connect-Oracle (Get-ConnectionString)
Add-Oracle $conn "INSERT INTO REGIONS (REGION_ID, REGION_NAME)
VALUES ($regionId, 'Test Region')"

3. Set up an OracleBulkCopy object:
$bulkCopy = New-Object Oracle.DataAccess.Client.
OracleBulkCopy($conn) `
 -property @{DestinationTableName = "COUNTRIES";
BulkCopyTimeout = 300; NotifyAfter = 50}
[void]$bulkCopy.ColumnMappings.Add("code", "country_id")
[void]$bulkCopy.ColumnMappings.Add("country_Text", "country_name")
[void]$bulkCopy.ColumnMappings.Add("region_id", "region_id")

Instant Oracle Database and PowerShell How-to

30

4. Register an event to be notified as record batches are inserted:
Register-ObjectEvent -InputObject $bulkCopy -EventName
OracleRowsCopied -SourceIdentifier BatchInserted `
 -MessageData $countryDT.Rows.Count -Action {
 $rowsCopied = $($event.sourceEventArgs.RowsCopied)
 $msg = "Inserted $rowsCopied records so far"
 $percentComplete = ($rowsCopied / $($event.MessageData) *
100)
 Write-Host $msg
 Write-Progress -Activity "Batch Insert" -Status $msg
-PercentComplete $percentComplete
 } | Out-Null

5. Call WriteToServer to start the import and time the duration:
$sw = [System.Diagnostics.StopWatch]::StartNew()
$bulkCopy.WriteToServer($countryDT)
$sw.Stop()
("Inserted {0} records total in {1:#0.000} seconds" -f $countryDT.
Rows.Count, $sw.Elapsed.TotalSeconds)

6. Perform teardown:
Unregister-Event -SourceIdentifier BatchInserted
$bulkCopy.Dispose()
$conn.Close()
$conn.Dispose()

7. Run the script. The sample output is as follows:
Inserted 50 records so far
Inserted 100 records so far
Inserted 150 records so far
Inserted 200 records so far
Inserted 210 records total in 0.052 seconds

How it works...
First a DataSet is created and loaded using the ReadXml method and the countries.
xml file in the current directory. This XML file is a slimmed down version from http://
madskristensen.net/post/XML-country-list.aspx and was not created with a
DataSet but the DataSet infers the schema from the data. A REGION_ID column is added
since the source data doesn't contain this value but we want it in the COUNTRIES table.
A default value of 5 ensures each row in the table gets this value.

Instant Oracle Database and PowerShell How-to

31

After connecting and inserting the test region using Add-Oracle from the previous recipe,
an OracleBulkCopy object is created and passed the connection. OracleBulkCopy
is much more efficient at bulk loading data from a data source into an Oracle table, than
iterating through data and inserting records one at a time. The DestinationTableName
is set to the COUNTRIES table, a BulkCopyTimeout of 5 minutes is set (300 seconds),
and we ask to be notified after every 50 records are processed with NotifyAfter. Next, the
column mappings are set with ColumnMappings.Add calls, where the first argument is the
source column name in the DataTable and the second is the destination column name in
the Oracle table. The column mappings are required when there are any differences between
column names, ordinal positions, or column counts between the source and destination. Note
that REGION_ID has to be mapped even though the name matches and [void] prevents
outputting the mapping object created.

Next, an event listener is registered for the OracleRowsCopied event of the
OracleBulkCopy object in order to output progress information during the bulk import.
In this sample there are only a couple hundred rows in the source XML file and they are
processed so quickly that the progress bar is not really visible, short of setting a breakpoint.
You will often be inserting considerably more records and the progress information may
be more useful. The code in the -Action block defines the event logic of referencing the
number of rows copied so far, the total row count, and the completion percentage, and writing
that to the host output and progress. Note that $countryDT.Rows.Count is passed as
the -MessageData parameter, as variables outside the Action block cannot be reliably
accessed. This may work from the PowerShell ISE but not from the PowerShell console.

Finally the WriteToServer method invokes the bulk insert operation. We pass it the
countries' DataTable but it can take different data sources including an array of DataRow,
a DataReader or an OracleRefCursor type. A StopWatch object is used to calculate the
duration and afterwards we clean up by unregistering the event, closing the connection, and
disposing objects.

OracleBulkCopy will not perform updates, only inserts. In this example
the countries XML file does not contain any countries already in the
COUNTRIES database table. If it did, constraints could be violated or duplicate
data inserted. Additionally if the country names in the source data exceeded
the column size in the database, an ORA-26093 error would be raised.

There's more...
In some cases with a limited amount of records to insert, iterating over data in a file and
inserting records one at a time may be acceptable performance wise for the flexibility of
custom processing.

For very large data sets you may need to look at automating SQL *Loader from PowerShell
or using Oracle's External Tables feature.

Instant Oracle Database and PowerShell How-to

32

Another popular technique is using array binding, which we will look at next. You may need
to experiment with different techniques and compare performance and trade-offs.

Using array binding for bulk inserts
Another common option for efficient bulk inserts is using array binding to insert records in
one batch operation based on arrays of values:

$regions = Import-CSV (join-path (Get-ScriptDirectory) Regions.csv)
$regionIds = New-Object int[] $regions.Count
$regionNames = New-Object string[] $regions.Count
$index = 0

foreach ($r in $regions) {
 $regionIds[$index] = $r.RegionId; $regionNames[$index++] =
$r.RegionName
}

$cmd = New-Object Oracle.DataAccess.Client.OracleCommand(`
 "insert into regions values (:region_id, :region_name)",$conn)
$idParam = $cmd.Parameters.Add(":region_id", [Oracle.DataAccess.
Client.OracleDbType]::Int32)
$nameParam = $cmd.Parameters.Add(":region_name", [Oracle.DataAccess.
Client.OracleDbType]::Varchar2)
$idParam.Value = $regionIds; $nameParam.Value = $regionNames
$cmd.ArrayBindCount = $regions.Count
$trans = $conn.BeginTransaction()
$cmd.ExecuteNonQuery()
$trans.Commit()

The sample code for this recipe includes a simple Regions.csv file with region ID and region
name. This file is read with Import-CSV and empty int and string arrays are created with
a size matching the record count. Next, the arrays are filled by looping over the loaded CSV
data. Bind variable parameters are used as before in the recipe, Adding Records but this
time the values of the parameters are set to the arrays instead of single values. The other key
here is setting the ArrayBindCount to the number of records. Additionally, a transaction is
created to ensure all records are inserted or rolled back.

Updating and deleting records (Simple)
In this recipe we'll look at invoking SQL commands to make changes to Oracle, mostly with
UPDATE and DELETE statements but we will also look at related topics such as modifying an
Oracle schema.

Instant Oracle Database and PowerShell How-to

33

How to do it...
1. Define the function Invoke-Oracle:

function Invoke-Oracle
{
Param(
 [Parameter(Mandatory=$true)][Oracle.DataAccess.Client.
OracleConnection]$conn,
 [Parameter(Mandatory=$true)][string]$sql,
 [Parameter(Mandatory=$false)][System.Collections.
Hashtable]$paramValues,
 [Parameter(Mandatory=$false)][switch]$passThru
)
 $cmd = New-Object Oracle.DataAccess.Client.
OracleCommand($sql,$conn)
 $cmd.BindByName = $true

 if ($paramValues)
 {
 foreach ($p in $paramValues.GetEnumerator())
 {
 $oraParam = New-Object Oracle.DataAccess.Client.
OracleParameter
 $oraParam.ParameterName = $p.Key
 $oraParam.Value = $p.Value
 $cmd.Parameters.Add($oraParam) | Out-Null
 }
 }

 $result = $cmd.ExecuteNonQuery()
 $cmd.Dispose()

 if ($passThru) { $result }
}

2. Load ODP.NET and connect to Oracle as in previous recipes.

3. Make some calls to Add-Oracle with various INSERT, UPDATE, and DELETE
SQL statements:
$affected = Invoke-Oracle $conn -PassThru `
 "UPDATE HR.JOBS SET MIN_SALARY = MIN_SALARY + 1000 WHERE
UPPER(JOB_TITLE) LIKE '%MANAGER%'"
"Updated {0} job record(s)" -f $affected

$cities = "Jacksonville", "Orlando", "Tampa", "Miami", "Del Ray

Instant Oracle Database and PowerShell How-to

34

Beach"
$inserted = 0
foreach ($city in $cities) {
 $inserted += Invoke-Oracle $conn "INSERT INTO HR.LOCATIONS
(LOCATION_ID, CITY, STATE_PROVINCE) `
 VALUES (HR.LOCATIONS_SEQ.NEXTVAL, :CITY, :STATE_PROVINCE)"
`
 @{ 'CITY'=$city; 'STATE_PROVINCE'='Florida' } -PassThru
}

"Inserted $inserted location records"

Invoke-Oracle $conn "UPDATE HR.LOCATIONS SET COUNTRY_ID = `
 (SELECT COUNTRY_ID FROM HR.COUNTRIES WHERE COUNTRY_NAME =
'United States of America')"

"Deleted {0} location records" -f (Invoke-Oracle $conn `
 "DELETE FROM LOCATIONS WHERE STATE_PROVINCE = 'Florida'"
-PassThru)

4. Run the script. Output is as follows:
Updated 6 job record(s)
Inserted 5 location records
Deleted 5 location records

How it works...
The Invoke-Oracle function is very similar to the Add-Oracle function from the two
previous recipes, except it does not include any code to get back record ids of any records
inserted. Another difference is Invoke-Oracle includes a -PassThru switch parameter
that can be specified to return the number of records affected by the statement; by default
the function does not emit output.

There's more...
Invoke-Oracle can also be used for multi-statement PL/SQL blocks:

$sql = @"
BEGIN
INSERT INTO HR.REGIONS (REGION_ID, REGION_NAME) VALUES (5, 'Africa');
INSERT INTO HR.COUNTRIES(COUNTRY_ID, COUNTRY_NAME, REGION_ID) VALUES
('BU','Burundi', 5);
END;
"@
Invoke-Oracle $conn $sql

Instant Oracle Database and PowerShell How-to

35

In addition to inserts, updates, and deletes, Invoke-Oracle also works fine for simple DDL
operations such as CREATE TABLE or DCL operations such as GRANT or REVOKE:

Invoke-Oracle $conn "ALTER TABLE HR.DEPARTMENTS ADD NOTE VARCHAR2(100)
NULL"
Invoke-Oracle $conn "ALTER TABLE HR.DEPARTMENTS DROP COLUMN NOTE"

Updating with a DataAdapter
Sometimes you may want to select data into a DataTable using an OracleDataAdapter as
in the recipe Retrieving data (Simple), make some changes in PowerShell, then update those
back to the Oracle table without manually creating an UPDATE statement and command:

$sql = "SELECT EMPLOYEE_ID, MANAGER_ID, SALARY FROM HR.EMPLOYEES WHERE
DEPARTMENT_ID = 90"
$cmd = New-Object Oracle.DataAccess.Client.OracleCommand($sql,$conn)
$da = New-Object Oracle.DataAccess.Client.OracleDataAdapter($cmd)
$cmdBuilder = new-object Oracle.DataAccess.Client.OracleCommandBuilder
$da
$dt = New-Object System.Data.DataTable
[void]$da.Fill($dt)

foreach ($dr in $dt.Rows) {
 if ($dr.manager_id -eq 100) {$dr.salary += $dr.salary * .10}
}

"Updated {0} records" -f $da.Update($dt)

An OracleCommandBuilder is created, and it is passed the data adapter that it will use to
automatically create an UpdateCommand to be used when the Update method is called on
the OracleDataAdapter to persist the changes. The command builder will use metadata
from the DataTable and SelectCommand ($cmd) to construct the update command. It will
listen for changes to the data table to track what changed.

This method only works for single-table updates and you may find that it generates SQL that
you might not expect. You can inspect $cmdBuilder.GetUpdateCommand() to see the
update statement it generates.

Executing database procedures (Medium)
In this recipe we will explore executing a database package procedure that returns multiple
Ref Cursors and loading that data into a DataSet.

Instant Oracle Database and PowerShell How-to

36

Getting ready
To run the code, first execute EMPLOYEE_PACKAGE.pls in a DBMS tool. This sample package
SQL file is included with the code for this recipe.

How to do it...
1. Create a function to return a connection object:

function New-Connection
{
 $dataSource = "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)
(HOST=localhost)(PORT=1521))(CONNECT_DATA=(SERVICE_NAME=xe)))"
 $connectionString = ("Data Source={0};User
Id=HR;Password=pass;Connection Timeout=10" -f $dataSource)
 New-Object Oracle.DataAccess.Client.OracleConnection($connecti
onString)
}
Create a function to set up a command for executing a database
procedure:
function New-ProcCommand ($procedure, $parameters)
{
 $cmd = New-Object Oracle.DataAccess.Client.
OracleCommand($procedure, (New-Connection))
 $cmd.CommandType = [System.Data.CommandType]::StoredProcedure
 $parameters | foreach {$cmd.Parameters.Add($_) | Out-Null}
 $cmd
}

2. Create helper functions for creating OracleParameter objects:
function New-Param ($name, $type, $value,
 $size = 0, $direction = [System.Data.
ParameterDirection]::Input)
{
 New-Object Oracle.DataAccess.Client.OracleParameter($name,
$type, $size) `
 -property @{Direction = $direction; Value = $value}
}

function New-CursorParam ($name)
{
 New-Param -name $name -type ([Oracle.DataAccess.Client.
OracleDbType]::RefCursor) `
 -direction ([System.Data.ParameterDirection]::Output)
}

Instant Oracle Database and PowerShell How-to

37

3. Add a function to return a data reader for reading procedure Ref Cursors:
function Get-ProcReader ($procedure, $parameters)
{
 $cmd = New-ProcCommand $procedure $parameters
 if ($cmd.Connnection.State -ne [System.Data.
ConnectionState]::Open)
 {
 $cmd.Connection.Open()
 }
 ,$cmd.ExecuteReader()
}

4. Define a function to invoke a LOAD_EMPLOYEE procedure from EMPLOYEE_PACKAGE
and load the results into a DataSet.
function Get-EmployeeDataSet ($employeeId)
{
 $procedure = "HR.EMPLOYEE_PACKAGE.LOAD_EMPLOYEE"
 $params = @(
 (New-Param -name "I_EMPLOYEE_ID" -type ([Oracle.
DataAccess.Client.OracleDbType]::Int32) -value $employeeId)
 (New-CursorParam -name "O_EMPLOYEES")
 (New-CursorParam -name "O_LOCATIONS")
)
 $ds = New-Object System.Data.DataSet("EmployeesDataSet")
 $empDT = $ds.Tables.Add("EMPLOYEES")
 $locDT = $ds.Tables.Add("LOCATIONS")
 $reader = Get-ProcReader $procedure $params
 $empDT.Load($reader)
 $locDT.Load($reader)
 $reader.Close(); $reader.Dispose()
 $ds
}

5. Add code to invoke the function and output the rows returned:
$ds = Get-EmployeeDataSet -employeeId 203
$ds.Tables["EMPLOYEES"]
$ds.Tables["LOCATIONS"]
$ds.Dispose()

6. Run the script. Sample output follows.
EMPLOYEE_ID : 203
FIRST_NAME : Susan
LAST_NAME : Mavris
EMAIL : SMAVRIS
PHONE_NUMBER : 515.123.7777

Instant Oracle Database and PowerShell How-to

38

HIRE_DATE : 6/7/2002 12:00:00 AM
JOB_ID : HR_REP
JOB_TITLE : Human Resources Representative
SALARY : 6500
COMMISSION_PCT :
MANAGER_ID : 101
MANAGER_NAME : Neena Kochhar
DEPARTMENT_ID : 40
DEPARTMENT_NAME : Human Resources

LOCATION_ID : 2400
STREET_ADDRESS : 8204 Arthur St
POSTAL_CODE :
CITY : London
STATE_PROVINCE :
COUNTRY_ID : US

How it works...
The New-Connection function is slightly different than past connecting code in that it
defines the connection string in the same method and doesn't automatically open the
connection it creates.

New-ProcCommand expects a procedure name and an array of OracleParameter objects
and it creates the command, sets the command text to the procedure name, creates and
associates the OracleConnection object, set the command type, adds each parameter to
the Parameters collection, and returns the command.

The New-Param helper method saves some typing when creating OracleParameter
methods later via creating the object and defaulting some of the property values such as
size and duration. Likewise the New-CursorParameter goes a step further with setting the
parameter type and direction as well.

Get-ProcReader makes the call to create the command object. As it doesn't control the
creation of the command or connection, it also checks the state of connection and opens it if
it isn't open, though the connection would always be closed with the current definition of the
functions. Finally it invokes the procedure with ExecuteReader and prevents unrolling the
returned results with the leading comma, as a data reader return value is expected.

Get-EmployeeDataset sets the procedure name and the array of OracleParameter
objects that Get-ProcReader expects. It also sets up a new DataSet via adding
DataTables where the Ref Cursor results from the procedure will be stored. The DataSet
and DataTables are given friendly names to make working with the results easier. Further
DataSet set up may often be desirable, this is a minimum. The data tables are then loaded
with the reader, in the order the cursors are opened in the database procedure. Finally the
clean up is done, the DataSet is returned, the function is invoked, and results are output.

Instant Oracle Database and PowerShell How-to

39

There's more...
In this example we executed a package procedure that returned Ref Cursors but we could use
the same or similar code to invoke functions or procedures inside or outside a package that
perform other tasks such as inserting data or returning simple values. The sample code for
this recipe includes other script files with these examples. Let's look at invoking a function.

Invoking a function
ODP.NET uses positional parameter binding by default. When calling a function we want
to set $cmd.BindByName = $true for the command (in New-ProcCommand). Afterwards
the following code is used to invoke the GET_EMPLOYEE_MANAGER function in the
EMPLOYEE_PACKAGE to return the manager name of a given employee ID:

function Invoke-Proc ($procedure, $parameters)
{
 $cmd = New-ProcCommand $procedure $parameters
 if ($cmd.Connnection.State -ne [System.Data.
ConnectionState]::Open) {$cmd.Connection.Open()}
 $cmd.ExecuteNonQuery() | Out-Null
 $cmd.Connection.Close(); $cmd.Connection.Dispose(); $cmd.Dispose()
}

function Get-EmployeeManager ($employeeId)
{
 $params = @(
 (New-Param -name "i_employee_id" -type ([Oracle.DataAccess.
Client.OracleDbType]::Int32) -value $employeeId)
 (New-Param -name "RETURN_VALUE" -type ([Oracle.DataAccess.
Client.OracleDbType]::Varchar2) `
 -direction ([System.Data.ParameterDirection]::ReturnValue
) -size 46)
)
 Invoke-Proc "HR.EMPLOYEE_PACKAGE.get_employee_manager" $params
 $params[1].Value
}

"Manager of employee id 200 is {0}" -f (Get-EmployeeManager 200)

This produces the following output:

Manager of employee id 200 is Neena Kochhar

Alternatively, without using BindByName, CommandType.Text could be used instead of
CommandType.StoredProcedure and the function could be called inside a BEGIN/END
PL/SQL block.

Instant Oracle Database and PowerShell How-to

40

Organizing and invoking scripts (Medium)
In this recipe we will look at organizing script code into multiple script files for better
reusability and maintainability.

Getting ready
Complete previous recipes first. Use the sample code files included with this recipe or create
them manually in the same directory, copying code from the samples as needed.

How to do it...
1. Create Oracle.DataAccess.ps1 for common ODP.NET code. Some examples

from this file included with this recipe's sample code are as follows:
function Get-ODPAssemblyName
{
param ([Parameter(Mandatory=$true)][validateset(2,4)]
 [int] $version)
 $a = @{}
 $a["2"] = "Oracle.DataAccess, Version=2.112.3.0,
Culture=neutral, PublicKeyToken=89b483f429c47342"
 $a["4"] = "Oracle.DataAccess, Version=4.112.3.0,
Culture=neutral, PublicKeyToken=89b483f429c47342"
 $a[$version.ToString()]
}

function Get-ODPAssembly
{
 [appdomain]::currentdomain.getassemblies() `
 | ? {$_.FullName -like 'Oracle.DataAccess,*'} `
 | select -first 1
}

function Load-ODP
{
param (
 [Parameter(Position=0, Mandatory=$true)]
 [validateset(2,4)]
 [int] $version,
 [Parameter(Position=1)]
 [switch] $passThru
)
 $asm = [System.Reflection.Assembly]::Load((Get-ODPAssemblyName

Instant Oracle Database and PowerShell How-to

41

$version))
 if ($passThru) { $asm }
}

function Select-ODPTypes
{
 (Get-ODPAssembly).GetTypes() | ? {$_.IsPublic} | sort {$_.
FullName }
}

2. Create a file Utilities.ps1 for common code often used in conjunction with ODP.
NET. A partial sample from the sample code is as follows:
function Get-ConfigConnectString
{
Param([Parameter(Mandatory=$true)] [string]$filename,
 [Parameter(Mandatory=$true)] [string]$name)
 $config = [xml](cat $filename)
 $item = $config.configuration.connectionStrings.add | where
{$_.name -eq $name}
 if (!$item) { throw "Failed to find a connection string with
name '{0}'" -f $name}
 $item.connectionString
}

3. Create an App.config file with a connection string in the same directory as the
scripts; use the sample included with the code for this recipe or see the recipe
Connecting and disconnecting (Simple).

4. Create a file IncludeTest.ps1 to test the included functions. In this file first add
the following code to include the common function libraries:
. .\Utilities.ps1
. .\Oracle.DataAccess.ps1

5. Add some code to list out the functions that were included that have ODP in the
function name:
dir function: | ? {$_.Name -like '*ODP*'} | ft

6. Load ODP.NET 2x and list types that begin with "OracleCo":
Load-ODP -version 2
Select-ODPTypes | ? {$_.Name -like 'OracleCo*'} | ft

Instant Oracle Database and PowerShell How-to

42

7. Connect and retrieve some data:
$conn = Connect-ODP (Get-ConfigConnectString .\App.config
AppConnect)
$dt = Get-ODPDataTable $conn "select employee_id, first_name,
last_name from employees where job_id = 'SA_MAN'"
$dt | ft -auto
$conn.Close(); $conn.Dispose()

8. Open a PowerShell command-line host, change the directory to the location of the
scripts, and run IncludeTest.ps1 with .\IncludeTest.ps1:

How it works...
First we moved common ODP.NET functions to Oracle.DataAccess.ps1 so they can be
reused across multiple scripts and we can start building a useful library of Oracle functions.
Next we did the same for Utilities.ps1 for any common functionality that is often used
with Oracle script code but isn't Oracle-specific. This allows each script using these script
libraries to focus on specific tasks and not setup, helpers, and infrastructure.

Next , we included the contents of these script files into IncludeTest.ps1 with the following:

. .\Utilities.ps1

. .\Oracle.DataAccess.ps1

Instant Oracle Database and PowerShell How-to

43

This is referred to as dot sourcing the scripts, which will pull all the functions and any variables
into the same runtime scope of IncludeTest.ps1. Note there is no leading space before the
period and then a space between the period and the filename. In this case we are expecting
these included scripts to be in the current directory (the .\) – not necessarily the directory of
the calling script (IncludeTest.ps1).

Usually the included files will be somewhere else and you may need to provide a full path to
the files being included, such as:

"C:\Scripts\Oracle.DataAccess.ps1"

Alternatively, you could modify your environment path either more permanently in Windows or
temporarily with PowerShell, as follows:

$env:Path += ";C:\Scripts"
. Oracle.DataAccess.ps1

Finally you might temporarily change directory to a known location using pushd and popd
before and after including the script files, or use other techniques such as relative pathing
from the script's directory using the Get-ScriptDirectory function from the recipe
Filtering and exporting data (Simple).

After dot sourcing the script files, IncludeTest.ps1 listed the functions in scope using
dir function: and the results showed the various ODP functions that we defined and
were loaded with the include. If we ran dir function: after the script finished executing,
the functions would no longer be available. However, if we ran IncludeTest.ps1 using dot
sourcing as well (. .\IncludeTest.ps1), the functions would still be in scope for use even
after the script finished executing.

The rest of the script remains similar to what we've looked at in previous recipes. One
difference is the use of more shorthand syntax such as ? in place of Where-Object,
sort instead of Sort-Object, and so on. More importantly we've refactored some
existing common functions a bit and added new ones, such as Load-ODP, which uses a
ValidateSet attribute as [ValidateSet(2,4)] to ensure that the version parameter
is either 2 or 4, to load the corresponding .NET framework version of Oracle.DataAccess.

There's more...
Care should be taken when dot sourcing files as problems can arise. For one, any script level
variables of the included scripts are globally available for get and set access in the script
they are included into. A careful naming convention should be chosen to ensure it's obvious
what functions do, and that there aren't function name collisions between scripts. Finally,
these functions should generally be generic in nature, with parameters to help prevent making
too many assumptions about the script code using the functions.

Instant Oracle Database and PowerShell How-to

44

The PowerShell profile
If you inspect $profile in PowerShell you'll get back a profile filename where common script
will be loaded automatically whenever you start a PowerShell session:

PS > $profile

C:\Users\Geoff\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.
ps1

You could dot source these common script libraries inside the profile script so they are
included automatically when starting PowerShell. You might even invoke some functions
afterwards such as Load-ODP. These files do not exist by default and there is a different
profile for each host; for example the ISE uses a Microsoft.PowerShellISE_profile.
ps1 filename. You may want to create and dot source a SharedProfile.ps1 file that
defines the shared profile script for all hosts.

Script automation and error handling
(Medium)

In this script we'll look at automating a PowerShell script with a scheduled task, logging, and
error handling. We will query employee data where the commission percentage exceeds a given
threshold and export that data to a CSV file for later analysis.

Getting ready
Complete the previous recipes first. Copy updated versions of Oracle.DataAccess.ps1
and Utilities.ps1 from the sample code files for this chapter that includes parameter
support in Get-ODPDataTable and a new function Get-CanTranscribe. Likewise copy
App.config and change the connection string as necessary.

How to do it...
1. Create a Query.sql file to define the SQL we want to execute:

select
 e.employee_id,
 e.first_name || ' ' || e.last_name employee,
 e.email,
 e.hire_date,
 e.job_id,
 e.salary,
 e.commission_pct,
 d.department_name department
from

Instant Oracle Database and PowerShell How-to

45

 HR.employees e
join
 HR.departments d
 on e.department_id = d.department_id
where
 e.commission_pct > :commission_threshold

2. Create HighCommission.ps1 and add the following script to it:
param (
[Parameter(Mandatory=$true)][string]$outputPath,
[Parameter(Mandatory=$false)][decimal]$commissionThreshold = .25)

$errorActionPreference = "Continue"

3. Add a function to HighCommission.ps1 to define set host line widths:
function Set-HostSettings
{
 if ($Host -and $Host.UI -and $Host.UI.RawUI) {
 $ui = (Get-Host).UI.RawUI
 $winSize = $ui.WindowSize; $buffSize = $ui.BufferSize
 $buffSize.Width = 120; $ui.BufferSize = $buffSize
 $winSize.Width = 120; $ui.WindowSize = $winSize
 }
}

4. Define an Invoke-Script function in HighCommission.ps1:
function Invoke-Script
{
 try {Set-HostSettings} catch {}
 "Processing started. Commission threshold is
$commissionThreshold, output path is $outputPath"

 "Checking existence of output path $outputPath"
 if (!(Test-Path $outputPath -PathType Container)) {
 throw "outputPath '$outputPath' doesn't exist"
 }

 "Importing Oracle.DataAccess.ps1"
 . (join-path $_scriptDir Oracle.DataAccess.ps1)

 $sqlFilename = (join-path $_scriptDir Query.sql)
 $configFile = (join-path $_scriptDir App.config)
 $outputFilename = (join-path $outputPath HighCommission.csv)

Instant Oracle Database and PowerShell How-to

46

 if (Test-Path($outputFilename)) {
 "Removing old copy of $outputFilename"
 Remove-Item $outputFilename -Force
 }

 "Loading ODP.NET 2x"; $asm = Load-ODP -version 2 -passthru
 "Loaded {0}" -f $asm.FullName

 "Reading SQL from $sqlFilename"
 $sql = (Get-Content $sqlFilename -EV err) | Out-String
 if ($err) {
 Write-Warning "SQL read failed; bailing"; throw $err
 }
 $sql

 "Reading connection string from $configFile"
 $connectString = (Get-ConfigConnectString $configFile
AppConnect)
 "Connecting with $connectString"
 $conn = Connect-ODP $connectString

 try {
 "Running SQL using threshold of $commissionThreshold"
 $dt = Get-ODPDataTable $conn $sql @{ 'commission_
threshold' = $commissionThreshold; }

 "Retrieved {0} record(s):" -f $dt.Rows.Count
 $dt | ft -auto

 "Exporting data to $outputFilename"
 $dt | Export-CSV -NoTypeInformation $outputFilename
 $dt.Dispose()
 }
 catch [System.Exception] {
 throw "Failed to run SQL: " + $_.Exception.ToString()
 }
 finally {
 "Closing connection"
 $conn.Close(); $conn.Dispose()
 }
}

Instant Oracle Database and PowerShell How-to

47

5. Add the following to HighCommission.ps1 to set up the Invoke-Script call:
try {
 $script:_scriptDir = (Get-ScriptDirectory)
 . (join-path $_scriptDir Utilities.ps1)

 if (Get-CanTranscribe) {
 try { Stop-Transcript | out-null } catch { }
 Start-Transcript -path (join-path $_scriptDir
"HighCommissionLog.txt")
 }

 Invoke-Script
}
catch [System.Exception] {
 $error = ("Script failed with error: {0}{1}{1}Script: {2}
Line,Col: {3},{4}" `
 -f $_.Exception.ToString(), [Environment]::NewLine,
$_.InvocationInfo.ScriptName, `
 $_.InvocationInfo.ScriptLineNumber, $_.InvocationInfo.
OffsetInLine)
 Write-Error $error; Exit 100
}
finally {
 if (Get-CanTranscribe) { Stop-Transcript }
}

6. Open the Task Scheduler via Win + R, type Taskschd.msc, then press Enter.

7. Click Create Basic Task… from the Actions panel. Supply a task name and click
Next until you get to the Start a Program step.

8. For the Program/script field, enter the appropriate path to PowerShell:
%SystemRoot%\syswow64\WindowsPowerShell\v1.0\powershell.exe

9. For Add arguments, use the following, changing the paths as needed:
-NonInteractive -Command "& c:\Scripts\HighCommission.ps1
-outputPath 'C:\Dropbox\Report Outbox\' -commissionThreshold
.3; exit $LASTEXITCODE"

10. Run the scheduled task, and then inspect the output files HighCommissionLog.
txt and HighCommission.csv.

Instant Oracle Database and PowerShell How-to

48

How it works...
This script defines script level parameters that control what directory the results will be
output to and what commission percentage threshold must be exceeded for an employee
to be included in the results. To be explicit, the script sets $ErrorActionPreference to
Continue (the default). This behaviour results in non-terminating errors being output and
script execution continuing; other valid values are SilentlyContinue, Inquire, and Stop.
Likewise $WarningPreference can be set the same way for handling warnings. Preferences
can be overridden when invoking cmdlets as follows: Remove-Item $outputFilename
-Force -ErrorAction SilentlyContinue.

At the bottom of the script, all of the processing code (mostly Invoke-Script) is enclosed in
a try/catch block so we can respond to any error and stop any transcription that was started
regardless of success or failure. Transcription automatically sends all output of the script
to a specified file without having to explicitly direct output for each command to a file. Since
transcription is not supported in the ISE, the function Get-CanTranscribe (in Utilities.
ps1) checks the host name and doesn't use transcription if running from the ISE (useful
while debugging). In the catch block the built-in $_.Exception and $_.InvocationInfo
variables are used to format the error message. The message is written to error output with
Write-Error and a non-zero Exit statement is used so the scheduled task will report a
failure when the script fails.

In the Invoke-Script function, Set-HostSettings is called to expand the host line
length from 80 to 120 characters. This is done so the output doesn't wrap as often in the
transcription log. Since this isn't critical, an empty catch block supresses any errors. Next,
the function throws an error if a valid directory was not passed in with the $outputPath
script parameter. The next error check comes with the following:

$sql = (Get-Content $sqlFilename -EV err) | Out-String
if ($err) {
 Write-Warning "SQL read failed; bailing"; throw $err
}

This uses the –ErrorVariable argument (EV for short) to send any error to the specified
variable, the $err variable in this case. Note that –EV err is used and not –EV $err. This
technique is another error handling approach that can be used on a cmdlet by cmdlet basis.
Here we turn any non-critical error reading the SQL from a file into both a warning and a
critical error.

Finally, we surround executing the SQL query (Get-ODPDataTable) with a try/catch block
to ensure the connection gets closed regardless of the success or failure of the SQL query.
The other important aspect of this script is output that's written every step of the way,
indicating what is about to happen and the result of what was just executed. This is critical
for troubleshooting since the script runs unattended in the background.

Instant Oracle Database and PowerShell How-to

49

When setting up the scheduled task the PowerShell.exe arguments were set as follows:

-NonInteractive -Command "& c:\Scripts\HighCommission.ps1 -outputPath
'C:\Dropbox\Report Outbox\' -commissionThreshold .3; exit $LASTEXITCODE"

The –NonInteractive argument is set since we won't be running the script in a user-
interactive way. The –Command argument is used instead of the –File argument since
we need to pass parameters to the script. We first tell PowerShell to run the script
HighCommission.ps1 with "& c:\Scripts\HighCommission.ps1. The outputPath
parameter for HighCommision.ps1 is then specified, using single quotes since the directory
has a space in the path. Next the default .25 value for the script's commisionThreshold
parameter is overridden with a .3 value. Finally, a semicolon is used to separate a second
statement of exit $LASTEXITCODE, which is needed to kick any error exit code up the
chain, through PowerShell.exe's exit code, and onto the scheduled task result.

There's more...
You may notice the PowerShell command-line host popping up briefly when running the
scheduled task. You may be able to avoid that by changing the user the scheduled task
runs under to NT AUTHORITY\SYSTEM. The user should be carefully considered in terms
of having enough permissions to perform the script actions but not more permissions than
necessary (as may be the case with SYSTEM). Consider using a service account and use
caution when using an account where the password will eventually expire.

When developing a script to be run as a scheduled task and when modifying it, it's best to
run it within PowerShell first, instead of from the scheduled task. If there are syntax or certain
other errors, you may not get any transcription output and any console that pops up may
disappear before you have time to see the error. If the script works from the console but
not from within the scheduled task, screen captures or screencasts can be used to snag any
temporarily visible error message. From there additional isolation changes can be made and
additional output writes added to help diagnose issues.

Another error tool is the built-in $Error variable. You can inspect $Error[0] to see the
most recent error or larger indexes to see prior ones. Finally you can query the $? automatic
variable; if it returns $false, the last command failed.

For scheduled tasks such as this one, sending an e-mail using System.Net.Mail.
SmtpClient can be useful. In this example in this recipe, attaching HighCommission.csv
on success and HighCommission.log on error would be a useful enhancement.

Instant Oracle Database and PowerShell How-to

50

Creating reusable script modules
(Advanced)

In this recipe we'll turn prior script libraries into more reusable script modules.

Getting ready
Complete the previous recipes first. See sample code files or prior recipes for additional
functions such as Get-DataTable and Set-CommandParamsFromArray.

How to do it...
1. Evaluate PowerShell module paths with $env:PSModulePath:

PS > $env:PSModulePath.Split(";")
C:\Users\Geoff\Documents\WindowsPowerShell\Modules
C:\Windows\system32\WindowsPowerShell\v1.0\Modules\

2. In your %USERPROFILE%\Documents\WindowsPowerShell\Modules\ folder,
create the folder Oracle.DataAccess (create the Modules folder if it does
not exist).

3. In the Oracle.DataAccess folder create the file Oracle.DataAccess.psm1
(note the psm1 extension, rather than ps1).

4. At the top of the file define a parameter for the version of ODP.NET to use, a variable
to save a connection object, and a Load function:
param ([Parameter(Mandatory=$true)][validateset(2,4)]
[int] $OdpVersion)
$SCRIPT:conn = $null

function Load {
param (
 [Parameter(Position=0, Mandatory=$true)]
 [validateset(2,4)] [int] $version,
 [Parameter(Position=1)] [switch] $passThru
)
 $name = ("Oracle.DataAccess, Version={0}.112.3.0,
Culture=neutral, PublicKeyToken=89b483f429c47342" -f $version)
 $asm = [System.Reflection.Assembly]::Load($name)
 if ($passThru) { $asm }
}

Instant Oracle Database and PowerShell How-to

51

5. Create a connection function with built-in Help documentation, and a connection
method to connect via TNS:
<#
.SYNOPSIS
Connects to oracle via a connection string.

.DESCRIPTION
Creates a new Oracle Connection and opens it using the specified
connections string.
Created connection is stored and not returned unless -PassThru is
specified.

.PARAMETER ConnectionString
The full connection string of the connection to be created and
opened.

.PARAMETER PassThru
If -PassThru is supplied, the created connection will be returned
and not stored.

.EXAMPLE
Connect to oracle with a connection string and store the
connection for later use without outputting it.

Connect "Data Source=LOCALDEV;User Id=HR;Password=Pass"

.NOTES
If -PassThru isn't used, the connection will be available for
later operations such as Disconnect, without having to pass it.
#>
function Connect {
[CmdletBinding()]
Param(
[Parameter(Mandatory=$true)] [string]$ConnectionString,
[Parameter(Mandatory=$false)] [switch]$PassThru)
 $conn= New-Object Oracle.DataAccess.Client.OracleConnection($C
onnectionString)
 $conn.Open()
 if (!$PassThru) {
 $SCRIPT:conn = $conn
 Write-Verbose ("Connected with {0}" -f $conn.
ConnectionString)
 }
 else {
 $conn

Instant Oracle Database and PowerShell How-to

52

 }
}

function Connect-TNS {
[CmdletBinding()]
Param(
[Parameter(Mandatory=$true)] [string]$TNS,
[Parameter(Mandatory=$true)] [string]$UserId,
[Parameter(Mandatory=$true)] [string]$Password,
[Parameter(Mandatory=$false)] [switch]$PassThru)
 $connectString = ("Data Source={0};User Id={1};Password={2};"
-f $TNS, $UserId, $Password)
 Connect $connectString -PassThru:$PassThru
}

6. Define functions to resolve a connection and to disconnect:
function Get-Connection ($conn) {
 if (!$conn) { $conn = $SCRIPT:conn }
 $conn
}

function Disconnect {
[CmdletBinding()]
Param(
 [Parameter(Mandatory=$false)]
 [Oracle.DataAccess.Client.OracleConnection]$conn)
 $conn = Get-Connection($conn)
 if (!$conn) {
 Write-Verbose "No connection is available to disconnect
from"; return
 }
 if ($conn -and $conn.State -eq [System.Data.
ConnectionState]::Closed) {
 Write-Verbose "Connection is already closed"; return
 }
 $conn.Close()
 Write-Verbose ("Closed connection to {0}" -f $conn.
ConnectionString)
 $conn.Dispose()
}

7. Add –WhatIf support to a function for executing non-query methods:
function Invoke {
[CmdletBinding(SupportsShouldProcess = $true)]
Param(

Instant Oracle Database and PowerShell How-to

53

 [Parameter(Mandatory=$false)][Oracle.DataAccess.Client.
OracleConnection]$conn,
 [Parameter(Mandatory=$true)][string]$sql,
 [Parameter(Mandatory=$false)][Hashtable]$paramValues,
 [Parameter(Mandatory=$false)][switch]$passThru
)
 $conn = Get-Connection($conn)
 $cmd = New-Object Oracle.DataAccess.Client.
OracleCommand($sql,$conn)
 Set-CommandParamsFromArray $cmd $paramValues
 $trans = $conn.BeginTransaction()
 $result = $cmd.ExecuteNonQuery(); $cmd.Dispose()

 if ($psCmdlet.ShouldProcess($conn.DataSource)) {
 $trans.Commit()
 }
 else {
 $trans.Rollback(); "$result row(s) affected"
 }

 if ($passThru) { $result }
}

8. At the bottom of the script, use Export-ModuleMember to define the functions to
be made public and automatically load ODP.NET:
Export-ModuleMember -Function Connect,Connect-TNS,Disconnect,Get-
DataTable,Invoke

Load -version $OdpVersion

9. Open a PowerShell command prompt and import the module:
PS > Import-Module Oracle.DataAccess -Prefix Oracle -ArgumentList
2

10. List the commands available in the module:
PS > Get-Command -Module Oracle.DataAccess | ft -auto

CommandType Name Definition

----------- ---- ----------

Function Connect-OracleTNS ...

Function Get-OracleDataTable ...

Function OracleConnect ...

Function OracleDisconnect ...

Function OracleInvoke ...

Instant Oracle Database and PowerShell How-to

54

11. Get help for OracleConnect (output matches function comments):
PS > Get-Help OracleConnect

12. Make a connection with a TNS entry name of LOCALDEV:
PS > Connect-OracleTNS LOCALDEV HR pass

13. See how many rows would have been updated using WhatIf:
PS > OracleInvoke -sql "UPDATE HR.EMPLOYEES SET MANAGER_ID = 114
WHERE MANAGER_ID = 108" -WhatIf

What if: Performing operation "OracleInvoke" on Target "LOCALDEV".

5 row(s) affected

14. Disconnect using –Verbose:
PS > OracleDisconnect -verbose

VERBOSE: Closed connection to Data Source=LOCALDEV;User Id=HR;

15. Optionally remove the module when finished with it:
PS > Remove-Module Oracle.DataAccess

How it works...
PowerShell modules provide better componentization than normal script files. First, any script
level variable in a module won't conflict with any same-named variable outside the module
and module variables cannot be accessed outside the module. Second, modules allow
selectively exporting certain commands as public while keeping other helper type functions
private to the module. Another module benefit (among others) is easily adding and removing
modules by name without worrying about the filename.

First we "installed" the module under My Documents\WindowsPowerShell\Modules,
where the subfolder name is the name of the module and the module filename matches
the module folder name. We could have modified the PSModulePath environment variable
to point to another location, such as a company name under Program Files. If we wanted to
temporarily install the module we could also add it via its full filename.

An OdpVersion module parameter defines which .NET version of the ODP.NET assembly
to load and the load call is made at the end of the module, automatically loading ODP.NET
when the module is imported so functions are ready for use. Note that when the module is
imported, –ArgumentList 2 is used; unlike with script or function parameters, we can't use
named parameters when importing modules. Also note the –Prefix Oracle, which prefixes
Oracle to the names of the nouns in the names of the imported members; Get-DataTable
becomes Get-OracleDataTable for example. This helps in avoiding name conflicts and
aids in function description, meaning, and grouping. Public module functions should follow a
Verb-Noun naming convention and use standard PowerShell verbs or a warning will be output
when the module is imported.

Instant Oracle Database and PowerShell How-to

55

Above the Connect function, comment-based help is used to support Get-Help calls, which is
always a good idea for shared modules. In this function and others, the [CmdletBinding()]
attribute is used to enable use of Write-Verbose and Write-Debug, -WhatIf, and other
common parameters support such as –ErrorVariable. The Connect function was changed
to store the connection object in a script level variable (unless –PassThru is present) so it is
available for other functions needing a connection later, without needing to pass it each time.
Functions like Disconnect use the connection passed in if set; otherwise, they use the script
level connection object.

The Invoke function sets the SupportsShouldProcess property of the CmdletBinding
attribute to $true to enable –WhatIf support so we can test a non-query SQL method to see
how many rows would be affected if committed. The ShouldProcess method is called on
the built-in $psCmdlet object and is given the connection's data source as the target name
for output. When this method returns $false, it means –WhatIf was not supplied and the
transaction will get committed. Otherwise, the transaction is rolled back and the number of
affected rows is output.

After the functions, Export-ModuleMember lists the items we want publicly exposed.
Since functions such as Load and Get-Connection were not included, they can only be
used inside the module as helpers. Export-ModuleMember can be passed multiple items,
called multiple times, and used for other items like aliases and variables.

There's more...
This recipe just scratches the surface of what can be done with PowerShell modules,
advanced functions, and Oracle. We could port and refactor more prior Oracle functions to
cmdlet functions, define aliases, support pipeline input, accept script blocks as parameters,
tackle other Oracle operations, and much more.

Automating SQL*Plus (Advanced)
In this recipe we'll look at using SQL*Plus (included with ODP.NET) from PowerShell to execute
larger blocks of SQL, such as combined DDL scripts to update multiple procedures and views.
ODP.NET is great for basic select, insert, update, and delete statements, executing procedures
and the like but it breaks down for executing larger, complex batches of scripts such as
making many object changes for an application deployment. Issues with linefeeds, BEGIN/
END blocks, and multiple objects in one file can occur with ODP.NET but are well-handled in
SQL*Plus.

Getting ready
Ensure you have a TNS name entry set up for Oracle Express on localhost. See the Connecting
and disconnecting (Simple) recipe for more details.

Instant Oracle Database and PowerShell How-to

56

How to do it...
1. Create SqlPlus.ps1 and add the main driver script that will iterate through

subfolders of the script's directory and execute all SQL files it finds. Each subfolder
will be named to match an Oracle user/schema:
function Main {
 $server = read-host "Server TNS name"
 pushd (Get-ScriptDirectory)
 $userDirs = @(gci | ? {$_.PsIsContainer -and $_.Name -ne
"Logs"})

 foreach ($dir in $userDirs) {
 $user = $dir.Name
 $password = Get-Password($user)
 $sw = [System.Diagnostics.StopWatch]::StartNew()
 $runCountBefore = $script:_runCount
 Invoke-Scripts $server $user $password
 $sw.Stop()
 "Ran $($script:_runCount - $runCountBefore) script(s) " +
 "for $user@$server in $($sw.Elapsed.TotalSeconds)
second(s)"
 }

 popd
 "Finished. Ran $script:_runCount script(s) total"
}

$script:_dateId = "{0:MM-dd-yyyy.hh-mm-ss}" -f (Get-Date)
$script:_runCount = 0
Main

2. Define a utility function to prompt for, and return a password:
function Get-Password($user) {
 $pwd = read-host -AsSecureString "Password for $user@$server"
 [System.Runtime.InteropServices.Marshal]::PtrToStringAuto(`
 [System.Runtime.InteropServices.Marshal]::SecureStrin
gToBSTR($pwd))
}

3. Define a function to iterate through the files in the subfolder matching the user/
schema, execute each, and move executed files to a completed folder:
function Invoke-Scripts($server, $user, $password) {
 "Running scripts for $user on $server"
 pushd $user

Instant Oracle Database and PowerShell How-to

57

 $files = @(gci | where {!$_.PsIsContainer})
 $count = 0

 foreach ($file in $files) {
 write-progress -activity "Running scripts for $user" `
 -currentoperation $file.name -status Executing `
 -PercentComplete (100*$count++/$files.count)
 Invoke-Script $server $user $password $file
 New-Directory ".\Completed"
 move-item -path $file.fullname -destination ".\Completed"
-Force
 }

 write-progress -activity "Running scripts for $user" `
 -status Complete -completed
 popd
 "Completed running $count script(s) for $user on $server"
}

4. Define a function to run a given SQL file using SQL*Plus:
function Invoke-Script($server, $user, $password, $file) {
 $logDir = ("..\Logs\{0}\{1}" -f $script:_dateId, $user)
 New-Directory $logDir
 $logFile = join-path $logDir ($file.basename + ".html")

 "Running $file against $user@$server"
 (Get-SqlPlusSQL $file.fullname) | sqlplus.exe -L -M "HTML ON
SPOOL ON" `
 -S "$user/""$password""@$server" >> $logfile 2>$1
 "Ran $file against $user@$server. Details at $logfile"
 $script:_runCount++

 if ($LASTEXITCODE -ne 0) {
 write-error ("ERROR executing {0}!" -f $file.FullName)
 invoke-item $logFile; exit
 }
}

5. Define a function that will read the contents of a SQL file and surround it with
SQL*Plus commands to get the desired output:
function Get-SqlPlusSQL($filename) {
@"
 whenever sqlerror exit sql.sqlcode
 set echo off
 set termout off

Instant Oracle Database and PowerShell How-to

58

 $(gc $filename -readcount 0 | Out-String)
 commit;
 exit
"@
}

6. Define a helper function to create a new directory:
function New-Directory($dir) {
 if (!(test-path $dir)) {
 new-item $dir -type directory | Out-Null
 }
}

7. In the folder of SqlPlus.ps1, create a subfolder named HR

8. In a DBMS tool, connect to the sample HR database of Oracle Express and expand
Procedures in the HR schema. Select ADD_JOB_HISTORY and SECURE_DML and
export the DDL to a combined Procs.sql file in the HR folder. Likewise export
EMP_DETAILS_VIEW to EMP_DETAILS_VIEW.sql.

9. Execute the script and supply a TNS name and a password when prompted:

10. Verify the LAST DDL date was updated on these objects in the database.

11. Explore the Logs directory created and open the log files:

Instant Oracle Database and PowerShell How-to

59

How it works...
In the Main script we start by prompting for a server TNS name entry with Read-Host and
changing to the script directory. Next, Get-ChildItem (gci) is invoked to get the items in
the script directory that are folders ($_.PsIsContainer) not named Logs. For each directory,
the directory name is used for user/schema name, a password is read from the host, and these
values are passed to Invoke-Scripts to run the SQL files in that subdirectory.

Invoke-Scripts iterates through the files in the folder and calls Invoke-Script to
execute each. It also takes care of progress reporting and moving executed scripts to a
Completed subdirectory of the user/schema folder. This is more important if the SQL files
have table schema changes and data migrations that may not be intended to be run multiple
times. Note we are not recursively iterating folders and files here. If script files needed to be
run in a certain order, we'd want to add a numeric prefix to the files so they were iterated over
and executed in the right sequence.

Invoke-Script first sets up a log filename for the script to be executed and invokes
Get-SqlPlusSQL to build an adjusted SQL statement for the script before piping that
SQL to SQL*Plus. Since sqlplus.exe is in the ORACLE_HOME directory and that's in the
PATH environment variable, we don't need to specify the path to it. The –L parameter tells
sqlplus.exe to only attempt to log on once; otherwise any bad credentials could cause
an input prompt and hang the script. The –M parameter indicates we want HTML output.
The –S parameter invokes silent mode to prevent echoing of commands, banners, and
prompts. Credentials are passed to sqlplus.exe using the user/password@server format.
Output is redirected to $logfile and 2>$1 directs standard error to standard output. After
this, $LASTEXITCODE is checked; 0 indicates success otherwise it is the Oracle error number.
Any error is written with Write-Error, the log file is launched using Invoke-Item, and the
script immediately terminates with exit since one script failure could impact other scripts to
be executed.

The Get-SqlPlsSQL function uses whenever sqlerror exit sql.sqlcode to ensure
$LASTEXITCODE will be set in the event of an error. It then sets echo and termout to off
and includes the SQL contents of $filename with cat. A commit statement is added in
case $filename contains insert, update, or delete statements without a commit; SQL*Plus
should auto commit on exit as a default but here we are being explicit. Finally, exit is used to
terminate SQL*Plus.

This approach provides a generic way to automate running any number of SQL scripts with
PowerShell and SQL*Plus. In this example we're just reapplying some procedures and views
but the same script could be used to execute hundreds of DML, DDL, or DCL changes that are
common for application deployments.

Instant Oracle Database and PowerShell How-to

60

Exploring ODT assemblies (Advanced)
This recipe will explore use of the Oracle.Management.Omo assembly included with Oracle
Developer Tools for Visual Studio (ODT). This assembly is intended for internal use within
Visual Studio so you will not find documentation or support for it and any code you write
against it may break upon future ODT updates. Even so, this Oracle .NET library provides
such rich functionality that these drawbacks may be acceptable.

Getting ready
You will need ODT installed; see the recipe Setup Your Environment. You will need to be able
to load .NET 4.0 assemblies from PowerShell. See the Loading ODP.NET 4.0 section in the
Accessing Oracle (Simple) recipe for more.

How to do it...
1. Load the Oracle.Management.Omo assembly:

PS > $odtAsmName = "Oracle.Management.Omo, Version=4.112.3.0,
Culture=neutral, PublicKeyToken=89b483f429c47342"
PS > $asm = [Reflection.Assembly]::Load($odtAsmName)

2. Look at the types in the assembly that start with "Con":
PS > $types = $asm.GetTypes() | ? {$_.IsPublic}
PS > $types | ? {$_.Name -like 'Con*'} | sort {$_.FullName } | ft
-auto FullName

FullName

Oracle.Management.Omo.ConnectAs
Oracle.Management.Omo.Connection
Oracle.Management.Omo.ConstraintBase
Oracle.Management.Omo.ConstraintCollection
Oracle.Management.Omo.ConstraintInitialState
Oracle.Management.Omo.ConstraintType

Instant Oracle Database and PowerShell How-to

61

3. See what properties are on the connection object, as shown in the
following screenshot:

4. Create the connection object:
$conn = New-Object Oracle.Management.Omo.Connection `
 -property @{UserID="HR"; Password = "pass"; TnsAlias =
"LOCALDEV"}

5. Inspect methods on the connection object:

6. Open the connection and initialize it to prepare for digging deeper:
$conn.Open(); $conn.Initialize()

7. Get a collection of table objects and list table names:
PS > $tables = $conn.GetTables($false, $true)
PS > $tables | sort {$_.Name} | foreach {$_.Name}
COUNTRIES
DEPARTMENTS
EMPLOYEES
JOB_HISTORY
JOBS
LOCATIONS
REGIONS

Instant Oracle Database and PowerShell How-to

62

8. Get the DEPARTMENTS table and initialize it:
PS > $deptTable = $tables["DEPARTMENTS"]
PS > $deptTable.Initialize()

9. Display column information for the DEPARTMENTS table:
PS > $deptTable.Columns | ft -auto Ordinal,Name, IsNullable,
>> @{Label="Type"; Expression={"{0} ({1})" -f $_.DataType.
OracleType, $_.DataType.Size}}
>>

Ordinal Name IsNullable Type
------- ---- ---------- ----
 1 DEPARTMENT_ID False NUMBER (0)
 2 DEPARTMENT_NAME False VARCHAR2 (30)
 3 MANAGER_ID True NUMBER (0)
 4 LOCATION_ID True NUMBER (0)

10. Generate a CREATE TABLE script for DEPARTMENTS:
PS > $deptTable.GetCreateSQLs($true)[0]
CREATE TABLE "HR"."DEPARTMENTS" (
 "DEPARTMENT_ID" NUMBER(4,0) NOT NULL,
 "DEPARTMENT_NAME" VARCHAR2(30 BYTE) NOT NULL,
 "MANAGER_ID" NUMBER(6,0) NULL,
 "LOCATION_ID" NUMBER(4,0) NULL,
 CONSTRAINT "DEPT_LOC_FK"
 FOREIGN KEY ("LOCATION_ID")
 REFERENCES "HR"."LOCATIONS" ("LOCATION_ID")
 ENABLE
 VALIDATE,
 CONSTRAINT "DEPT_MGR_FK"
 FOREIGN KEY ("MANAGER_ID")
 REFERENCES "HR"."EMPLOYEES" ("EMPLOYEE_ID")
 ENABLE
 VALIDATE)
 STORAGE (
 NEXT 1048576)

11. Get DEPARTMENT table data and filter it down:
PS > $deptDS = $deptTable.GetData($true)
PS > $deptDS.Tables["DEPARTMENTS"] | ? {$_.department_id -lt 40} |
ft -auto DEPARTMENT_ID, DEPARTMENT_NAME

DEPARTMENT_ID DEPARTMENT_NAME
------------- ---------------
 10 Administration
 20 Marketing
 30 Purchasing

Instant Oracle Database and PowerShell How-to

63

12. Close the connection when finished:
PS > $conn.Close()

How it works...
The Oracle.Management.Omo assembly is located under the ORACLE_BASE\ORACLE_
HOME\odt folder and installed into the GAC (that is, %WINDIR%\Microsoft.NET\
assembly\GAC_32\Oracle.Management.Omo). After loading the assembly, we explore
the types in the assembly with $types = $asm.GetTypes(). Spotting a Connection
object in the results, we see what properties are available on it with ($types | ? {$_.
Name -eq "Connection"}).GetProperties(). With the properties known, we create
an Omo.Connection object and pass it connection details. We then inspect methods
available to us on the connection object using Get-Member (gm) using $conn | gm | ?
{$_.MemberType -eq "Method"}. We notice both Open and Initialize methods on
the connection so we invoke both in that order. If we didn't call Initialize we'd get an error
later when we tried to drill down into further use of the connection. Most of the objects in this
assembly work this way; you can get back basic details without having to initialize but to drill
into child objects you have to initialize the parent.

Next we get back a rich collection of table objects with $tables = $conn.
GetTables($false, $true), passing $false for the refresh parameter and $true to
fetch dependencies. From there we iterate through the tables and print out table names. Next
we reference the DEPARTMENTS table with $deptTable = $tables["DEPARTMENTS"]
and call Initialize() on it so we can access column data. We pipe the columns to
Format-Table (ft) and use an expression to concatenate sub object properties into
the results: @{Label="Type"; Expression={"{0} ({1})" -f $_.DataType.
OracleType, $_.DataType.Size}}.

Next we generate a CREATE table script with $deptTable.GetCreateSQLs($true)[0];
$true indicates the schema name should be appended and we access item 0 since the
method returns an ArrayList. Finally, we invoke the GetData method on the table (passing
$true to append the schema name in the query) to get a DataSet created with the table
data and then we close the connection.

There's more...
This is only a small fraction of Oracle.Management.Omo usage. We can query, alter, and
otherwise interact with nearly all Oracle types. If you can do it through Visual Studio using
Server Explorer and related integration points, you can probably do it through PowerShell.
While we could do much of this ourselves using Oracle.DataAccess and interacting with
Oracle system objects, that would involve a lot of raw plumbing already done for us inside this
ODT assembly. To explore this assembly more easily, create a project in Visual Studio that
references the Oracle.Management.Omo assembly, or use a .NET disassembler tool
such as JetBrain's dotPeek to explore all the objects and their members.

Instant Oracle Database and PowerShell How-to

64

There is some risk and trial and error using this approach but you may find the reward worth
it. Note ODT includes other assemblies such as Oracle.VsDevTools.dll but Oracle.
Management.Omo is the only logical choice from PowerShell.

Visualizing data (Advanced)
This recipe will explore visualizing Oracle data with charting using PowerShell.

Getting ready
Use Oracle.DataAccess.psm1 from the recipe Creating reusable script modules
(Advanced), also included with the sample code files for this recipe. You will need to
be able to load .NET 4.0 assemblies from PowerShell to use Microsoft Charting, which
is included with .NET Framework 4.0. See the Loading ODP.NET 4.0 section in the Accessing
Oracle recipe for more. Alternatively, you can install Microsoft Charting for .NET Framework 3.5
from http://www.microsoft.com/en-us/download/details.aspx?id=14422
without any changes for PowerShell v2.

How to do it...
1. Create Visualize.ps1 and add these script parameters:

param (
[string]$outputFile = ".\Salaries.png",
[string]$outputFormat = "PNG",
[bool]$interactive = $true,
[bool]$openImage = $false)

2. Define a function to get average salary data by job id into a DataTable:
function Get-SalaryData {
 Import-Module .\Oracle.DataAccess.psm1 -ArgumentList 2
 $sql = "select job_id, round(avg(salary), 2) avg_sal from
hr.employees group by job_id order by job_id"
 Connect-TNS -TNS LOCALDEV -UserId HR -Password pass
 $dt = Get-DataTable -sql $sql
 Disconnect; $dt
}

3. Load the assemblies we'll need for charting:
[void][Reflection.Assembly]::LoadWithPartialName("System.Windows.
Forms")
[void][Reflection.Assembly]::LoadWithPartialName("System.Windows.
Forms.DataVisualization")
Create a chart object and set up the title:

Instant Oracle Database and PowerShell How-to

65

$chart = New-object System.Windows.Forms.DataVisualization.
Charting.Chart `
 -property @{
 Width=800; Height=400; BackColor=[System.Drawing.
Color]::Transparent
 Dock = [System.Windows.Forms.DockStyle]::Fill
 }
$chartTitle = $chart.Titles.Add("Average Salaries by Job Code")
$chartTitle.Font = new-object drawing.font("calibri",18,[drawing.
fontstyle]::Regular)

4. Set up the chart area:
$chartArea = New-Object System.Windows.Forms.DataVisualization.
Charting.ChartArea
$chartArea.Area3DStyle.Enable3D = $true

5. Set up the Y-axis of the chart area:
$yAxis = $chartArea.AxisY
$yAxis.Title = "Salaries"
$yAxis.Interval = 5000
$yAxis.LabelAutoFitMinFontSize = 16
$yAxis.LabelStyle.Font = new-object drawing.
font("calibri",14,[drawing.fontstyle]::Regular)
$yAxis.TitleFont = new-object drawing.font("calibri",18,[drawing.
fontstyle]::Regular)

6. Set up the X-axis of the chart area:
$xAxis = $chartArea.AxisX
$xAxis.Interval = 1
$xAxis.LabelAutoFitMinFontSize = 16
$xAxis.Title = "Job Codes"
$xAxis.LabelStyle.Font = new-object drawing.
font("calibri",14,[drawing.fontstyle]::Regular)
$xAxis.TitleFont = new-object drawing.font("calibri",18,[drawing.
fontstyle]::Regular)

7. Add the chart area:
$chart.ChartAreas.Add($ChartArea)
Set up the chart data binding:
$series = $chart.Series.Add("Data")
$series.XValueMember = "job_id"; $series.YValueMembers = "avg_sal"
$series["DrawingStyle"] = "Cylinder"
$chart.DataSource = $dt; $chart.DataBind()

Instant Oracle Database and PowerShell How-to

66

8. Set up a form to place the chart onto and show it:
$form = New-Object Windows.Forms.Form -property `
 @{ Text=$chartTitle.Text; Width=900; Height=600;
 StartPosition = [Windows.Forms.FormStartPosition]::CenterScree
n }
$form.controls.add($Chart)

9. Save and open an image of the rendered chart if so configured:
if ($outputFile -and $outputFormat) {
 $chart.SaveImage($outputFile, $outputFormat)
 if ($openImage) { ii $outputFile }
}

10. If configured, show the chart on a windows form:
if ($interactive) {
 $form.Add_Shown({$Form.Activate()})
 $form.ShowDialog()
 $form.Dispose()
}

11. Change the directory to the location of Visualize.ps1 and run the script.
The result is as follows:

Instant Oracle Database and PowerShell How-to

67

How it works...
At the top of the script, some parameters with default values are defined that allow the
script to create (and optionally open) an image of the chart, and/or show the chart on a
Windows form.

The Get-SalaryData function imports the Oracle.DataAccess.psm1 module created
for the recipe Creating reusable script modules (Advanced) but in this case, the module is
imported by filename, looking for it in the current directory. SQL is defined to get the average
salary by job ID and return a DataTable of the results.

Next, the assemblies are loaded for Windows Forms and Windows Forms Charting to create
the screen and chart for display. The first step is creating and setting properties on a
System.Windows.Forms.DataVisualization.Charting.Chart object, followed by
setting up the chart area that is set up for 3D rendering.

The Y-axis of the chart area is then set up with an Interval of 5000 so we get a reasonable
amount of salary axis labels and tick marks on the left vertical axis. The script also adjusts
the font size for better readability. The X-axis is set up in a nearly identical format, except an
Interval of 1 is used to ensure every job id/code is rendered. Finally the chart area object
is added to the chart's ChartAreas collection.

Chart data binding is set up next, with the job_id column of the DataTable ($dt) being
specified for the X-axis value member and avg_sal used for the Y-axis. Lastly the DataSource
of the chart is set to the DataTable, and DataBind() is called.

To show the chart, the script sets up a new Windows.Forms.Form object onto which
the control will be added to the form's Controls collection. If the $outputFile and
$outputFormat script parameters are set, the SaveImage method of the chart is used to
create the chart image. If the $openImage script parameter is $true, Invoke-Item (ii)
is used to open the image in the default associated application. Finally if the $interactive
script parameter is set, a Shown event handler is added with Add_Shown that will activate the
form to bring it to the front when shown; then the window is shown as a dialog and the form
is disposed.

Instant Oracle Database and PowerShell How-to

68

There's more...
There is a lot more that can be done with the Microsoft Chart Controls for the .NET
Framework, both with the data and the visual appearance of the chart.

There are a number of other tools that can be used to visualize data in PowerShell:

 f JavaScript/JQuery/HTML/CSS can be output using PowerShell, leveraging JavaScript
libraries and web browsers to create and render the chart. For example, the JQuery
Visualize plugin can be found at http://www.filamentgroup.com/lab/
update_to_jquery_visualize_accessible_charts_with_html5_from_
designing_with/.

 f The SeeShell PowerShell module provides a professional, supported PowerShell
component for data visualization at http://www.codeowls.com/SeeShell/
Features.

 f For network graphs, NetMap from Microsoft Research can be used: http://www.
dougfinke.com/blog/index.php/2008/08/31/microsoft-research-
netmap-and-powershell/.

 f A number of third-party component vendors provide control suites that included
sophisticated charting controls. A few examples are as follows:

 � http://www.telerik.com/

 � http://www.infragistics.com/

 � http://www.devexpress.com/

 � http://www.componentone.com/

Thank you for buying
Instant Oracle Database
and PowerShell How-to

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle Database 11g –
Underground Advice for
Database Administrators
ISBN: 978-1-849680-00-4 Paperback: 348 pages

A real-world DBA survival guide for Oracle 11g database
implementations

1. A comprehensive handbook aimed at reducing
the day-to-day struggle of Oracle 11g Database
newcomers

2. Real-world reflections from an experienced DBA—
what novice DBAs should really know

3. Implement Oracle's Maximum Availability
Architecture with expert guidance

Oracle Database XE 11gR2
Jump Start Guide
ISBN: 978-1-84968-674-7 Paperback: 146 pages

Build and manage your Oracle Database 11g XE
environment with this fast paced, practical guide

1. Install and configure Oracle Database XE on
Windows and Linux

2. Develop database applications using Oracle
Application Express

3. Back up, restore, and tune your database

5. Includes clear step-by-step instructions and
examples

Please check www.PacktPub.com for information on our titles

Getting Started with Oracle
Data Integrator 11g: A
Hands-On Tutorial
ISBN: 978-1-849680-684 Paperback: 384 pages

Combine high volume data movement, complex
transformations and real-time data integration with the
robust capabilities of ODI in this practical guide

1. Discover the comprehensive and sophisticated
orchestration of data integration tasks made
possible with ODI, including monitoring and error-
management

2. Get to grips with the product architecture
and building data integration processes with
technologies including Oracle, Microsoft SQL
Server and XML files

Oracle 11g R1/R2 Real
Application Clusters
Essentials
ISBN: 978-1-849682-66-4 Paperback: 552 pages

Design, implement, and support complex Oracle 11g
RAC environments for real world deployments

1. Understand sophisticated components that make
up your Oracle RAC environment such as the role
of High Availability, the RAC architecture required,
the RAC installation and upgrade process, and
much more!

2. Get hold of new Oracle RAC components such
as the new features of Automatic Storage
Management (ASM), performance tuning, and
troubleshooting.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Instant Oracle Database and PowerShell How-to
	Setting up your environment (Simple)
	Accessing Oracle (Simple)
	Connecting and disconnecting (Simple)
	Retrieving data (Simple)
	Filtering and exporting data (Simple)
	Adding records (Simple)
	Importing sets of records (Medium)
	Updating and deleting records (Simple)
	Executing database procedures (Medium)
	Organizing and invoking scripts (Medium)
	Script automation and error handling (Medium)
	Creating reusable script modules (Advanced)
	Automating SQL*Plus (Advanced)
	Exploring ODT assemblies (Advanced)
	Visualizing data (Advanced)

